

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2019 MARKING GUIDELINES

PHYSICAL SCIENCES: CHEMISTRY (PAPER 2) (10842)

13 pages

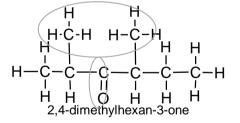
(3)

QUESTION 1

- 1.1 A ✓ ✓
- 1.2 D ✓ ✓
- 1.3 D ✓ ✓
- 1.4 B ✓ ✓
- 1.5 D ✓ ✓
- 1.6 C ✓ ✓
- 1.7 D ✓ ✓
- 1.8 A ✓ ✓
- 1.9 C ✓ ✓
- 1.10 C ✓✓ [20]

QUESTION 2

2.1 2.1.1 A ✓ (1)


2.1.2 A ✓ (1)

2.1.3 C ✓ (1)

2.1.4 B ✓ (1)

2.1.5 D ✓ (1)

2.2

Marking guidelines:

- Correct ketone functional group ✓
- Both side chains / branches correct on correct carbon atom ✓
- Whole structure correct ✓

2.3 2,3-dichloro-3-fluorobutanal

2.3 2,3-dichloro-3-fluorobutanal (3) [11]

(1)

(6)

QUESTION 3

- 3.1 Esters ✓ OR carboxylic acids 3.1.1
 - 3.1.2 Ketones ✓ (1)

but-2-ene

OR 2-butene

- 3.2 3.2.1 Chain isomers: Same molecular formula, but different types of chains $\checkmark\checkmark$ (2)
 - 3.2.2 Н Η Η

OR 1-butene

but-1-ene

2-methylprop-1-ene

Marking guideline:

One mark for whole structure One mark for correct IUPAC name for each of the isomers

OR methylpropene OR 2-methyl-1-propene

- 3.3 Butan-1-ol ✓ and pentanoic acid ✓ 3.3.1
- 3.3.2 Condensation ✓ **OR** esterification

(1)

3.4 If answered as: Butyl pentanoate has a higher boiling point than butyl butanoate.

> Both esters have the same type of intermolecular forces (London forces). ✓ Butyl pentanoate has a longer chain therefore stronger forces between the molecules. ✓

> More energy is required to overcome the intermolecular forces between butyl pentanoate ✓ therefore the boiling point is higher.

If answered as: Butyl butanoate has a lower boiling point than butyl pentanoate.

Both esters have the same type of intermolecular forces (London forces). Butyl butanoate has a shorter chain therefore weaker intermolecular forces between the molecules.

Less energy is required to overcome the intermolecular forces between butyl butanoate.

Marking criteria

- same intermolecular forces must be mentioned. Their names need not be mentioned. ✓
- comparison chain length / molecular mass ✓
- energy required ✓

(3)

3.5.1 Addition polymerisation: A reaction in which small molecules join to form very large molecules by adding on at double bonds. ✓✓

Condensation polymerisation: Molecules of two monomers with different functional groups undergo condensation reactions with the loss of small molecules, usually water. ✓✓

(4)

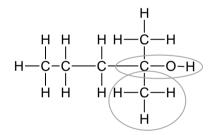
3.6.1 Polythene or Poliethene ✓

(1)

3.6.2 Ethene ✓

(1) **[22]**

QUESTION 4


- 4.1 Elimination / dehydrohalogenation / dehydrobromination ✓ (1)
- heat ✓ ✓
 Concentrated sodium hydroxide (NaOH) / Concentrated potassium hydroxide
 (KOH) / Concentrated strong base

OR

Hot ethanolic concentrated sodium hydroxide / potassium hydroxide / KOH / NaOH

(2)

4.3

Marking guidelines:

- Correct hydroxyl functional group on C-2 ✓
- Side chains / branch correct on correct carbon atom ✓
- Whole structure correct ✓
- If condensed structural formula given -1

(3)

(1)

4.4 H₂O / water ✓

...

4.5 Addition / Hydration ✓

(1) [**8**]

(1)

QUESTION 5

5.1 To prevent loss of any solution / acid from the flask ✓

OR

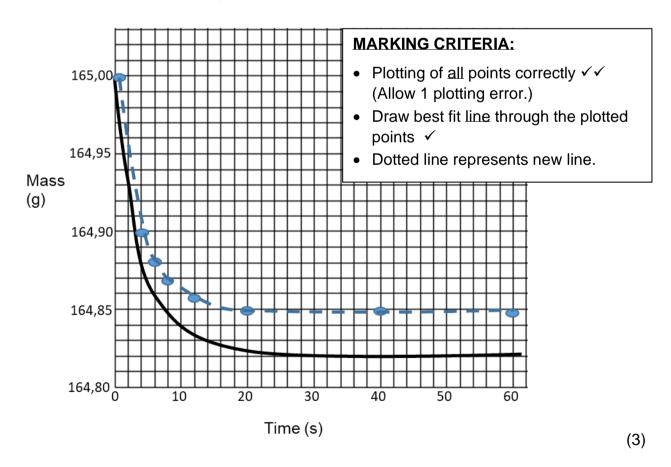
To allow gas to escape

OR

To prevent any solids / liquids getting in / out

OR

To prevent spurting


NOTE: Answer must not be given in terms of preventing evaporation or condensation.

5.2 Reaction rate =
$$\frac{\text{change in mass}}{\text{change in time}} = \frac{164,84 - 165,00}{10,0} \checkmark = -0.016 \text{ g·s-1} \checkmark$$

Accept positive sign or no sign in the answer.

5.3.1

Graph of mass versus time

5.3.3	The reaction will be faster. ✓ Increasing the temperature, increases the kinetic energy so that more particles have kinetic energy that is higher than the activation energy. ✓ More collisions with correct orientation ✓	
	More successful or effective collisions per unit time take place. ✓	(4)
5.4.1	2 ✓	(1)
5.4.2	State of division changed – <u>Size of the zinc particles increased / surface area increased</u> – originally lumps were used. ✓ Exp 1 powder and exp 2 lumps	
	Accept: removed catalyst.	(1)
5.4.3	0,5 g / half of the amount as in experiment 1. ✓	(1) [14]

- 6.1 A <u>catalyst</u> was used in the experiment that produced the graph for experiment C. ✓ (1)
- 6.2 The concentration of the products in both graphs at equilibrium are the same and the concentration of the reactants at equilibrium are the same, ✓ but equilibrium was reached faster in Experiment C than in Experiment A. ✓

OR

Equilibrium concentration is the same, equilibrium was not disturbed.

OR

Accept:

A catalyst was added and the rate of both forward and reverse reactions were increased.

(2)

6.3 EXOTHERMIC ✓

(1)

(3)

6.4 – negative marking from QUESTION 6.3

In experiment C the concentration of the reactants is higher than the concentration of the reactants in Experiment A when equilibrium is established. ✓

∴ The reverse reaction is favoured, ✓

Endothermic reaction is favoured when the temperature is increased. ✓

Therefore reverse reaction is endothermic OR the forward reaction is exothermic.

6.5 Use the data given to calculate the equilibrium constant at 500° C.

	H ₂ (g)	I2(g)	2HI(g)
Initial mol	0,5	0,5	0
Change in mol	-0,2	-0,2	0,4 ✓
Mol at equilibrium	0,3	0,3	0,4 ratio used ✓
Concentration at equilibrium	0,3	0,3	0,4

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]} \checkmark$$

$$= \frac{(0.4)^{2}}{(0.3)(0.3)} \checkmark \text{ (positive marking)}$$

$$= 1.78 \checkmark$$

MARKING CRITERIA:

- Change in mol of HI ✓
- Using ratio 1:1:2 ✓
- Addition and subtraction to get the correct mol at equilibrium / concentration at equilibrium √
- Correct K_c expression ✓
- Correct substitution of concentration at equilibrium values from this table√
- Correct final answer ✓

No Kc expression, correct substitution Max 5/6

Wrong Kc expression Max 3/6

(6)

OPTION 2

Concentration of I2 at equilibrium is 0,3 mol.dm-3.

c (
$$I_2$$
) initial = $\frac{n}{V}$
= $\frac{0.5}{1}$ and = $\frac{0.5}{1}$
= 0.5 mol·dm⁻³ = 0.5 mol·dm⁻³

	H ₂ (g)	I ₂ (g)	2HI(g)
Initial	0,5	0,5	0
concentration			
Change in	-0,2	-0,2	0,4 ✓
concentration			
concentration at	0,3 ✓	0,3	0,4 ratio used ✓
equilibrium			

K_c =
$$\frac{[HI]^2}{[H_2][I_2]} \checkmark$$

= $\frac{(0,4)^2}{(0,3)(0,3)} \checkmark$ (positive marking)
= 1.78 \checkmark

No Kc expression, correct substitution Max 5%

Wrong Kc expression Max 3/6

(6)

6.6 Lower than ✓ positive marking from QUESTION 6.3.

answer would then be: higher than (1)

6.7 +

$$\begin{split} & \text{K}_{\text{c}} = \frac{\left[\text{HI}\right]^2}{\left[\text{H}_2\right]\!\!\left[\text{I}_2\right]} \\ & = \frac{\left(0.38\right)^2}{\left(0.3\right)\!\!\left(0.3\right)} \text{ (re-calculate equilibrium concentrations)} \end{split}$$

Note: may use calculation or use explanation.

The [product] is smaller and the [reactant] is higher at the higher temperature. ✓ This results in a lower K_c value at a higher temperature. ✓ Or

Equilibrium is to the left and reverse reaction is favoured.

(2) **[16]**

(3)

QUESTION 7

7.1 Temperature = 25₀ C / 298 K ✓
Pressure = 101,3 kPa / 1,013 x 10 ₅ / 1 atm) ✓
[Cl-] = 1 mol·dm-3 ✓

7.2

7.2.1 Mn \rightarrow Mn₂₊ + 2e₋ \checkmark (2)

Marking criteria:

$$Mn \leftarrow Mn^{2} + 2^{e^{-}} \qquad \begin{pmatrix} 2/2 \end{pmatrix}$$

$$Mn \leftarrow Mn^{2+} + 2e^{-} \Rightarrow Mn \qquad \begin{pmatrix} 1/2 \end{pmatrix}$$

$$Mn2 + 2e^{-} \leftarrow Mn \qquad \begin{pmatrix} 0/2 \end{pmatrix}$$

$$Mn \Rightarrow Mn^{2+} + 2e^{-} \qquad \begin{pmatrix} 0/2 \end{pmatrix}$$

Ignore if charge is omitted on electron.

If charge (+) is omitted on Mn₂₊ Max. ½

7.2.2 Mn + $C\ell_2 \rightarrow 2C\ell_- + Mn_{2+}$

7.3 $Mn(s) / Mn_{2+}(aq)(1 \text{ mol·dm-}_3) // C\ell_2(g)(1 \text{ atm}) / C\ell_-(aq)(1 \text{ mol·dm-}_3) / Pt$

NOTE:

Do not penalise if phases and conditions are not included.

(1)

(3)

- 7.4 MnCℓ₂ / Mn(NO₃)₂ / MnSO₄√
- 7.5 Chlorine gas ✓ OR C₂ (1)
- 7.6 $E_{cell}^{\theta} = E_{reduction}^{\theta} E_{oxidation}^{\theta} \checkmark$ $= +1,36 (-1,18) \checkmark$ $= +2,54 \text{ V} \checkmark$

Note:

Accept any other correct formula from the data sheet.

Any other formula using unconventional abbreviations, e.g. Ecell = EOA – ERA

Followed by correct substitutions: Max $\frac{2}{3}$

(3) **[16]**

- 8.1 8.1.1 P \(\square \) (1)
 - 8.1.2 P is connected to the positive terminal of the battery. ✓ (1)
- 8.2 8.2.1 Ni₂₊(aq) \checkmark Note: (aq) may be omitted. (1)
 - 8.2.2 Q ✓ (1)
 - 8.2.3 Q ✓ (1)
 - 8.2.4 Ni₂₊ + 2e₋ \rightarrow Ni \checkmark

Marking criteria:

 $Ni \leftarrow Ni^{2+} + 2^{e^{-}} \qquad \begin{pmatrix} 2/2 \end{pmatrix}$ $Ni^{2+} + 2e^{-} \Rightarrow Ni \qquad \begin{pmatrix} 1/2 \end{pmatrix}$ $Ni^{2+} + 2e^{-} \leftarrow Ni \qquad \begin{pmatrix} 0/2 \end{pmatrix}$ $Ni^{2+} + 2e^{-} \leftarrow Ni \qquad \begin{pmatrix} 0/2 \end{pmatrix}$

 $Ni \rightleftharpoons Ni^{2+} + 2e^{-}$

Ignore if charge is omitted on electron.

If charge (+) is omitted on Ni₂₊ Max. ½

- 8.2.5 Remains the same ✓ (1)
- 8.2.6 For each mole or atom of nickel oxidised at the anode, a mole or atom of nickel is reduced at the cathode. ✓ ✓ Or

Rate of oxidation equals the rate of reduction.

(2) **[10]**

(2)

9.1.3
$$n = cV \checkmark$$

= (0,05)(0,036) \checkmark
= 1,8 x 10-3 mol H₂SO₄ \checkmark

1,8 x 10-3 mol H₂SO₄ neutralised 1,8 x 10-3 mol Na₂CO₃ in 25 cm₃

+ positive marking from QUESTION 9.1.3 (3)

9.1.4
$$m = nM \checkmark$$

= 1,8 x 10-3 \checkmark x 106 \checkmark
= 0,1908 q \checkmark

Marking criteria:

- √ formula
- ✓ ratio of mol
- **√** 106
- √ correct answer

Also accept:

$$\frac{n_b}{n_a} = \frac{c_b V_b}{c_a V_a}$$

$$\frac{1}{1} = \frac{c_b 25}{0,05 \times 36}$$

 $c_{b} = 0.072 \text{ mol} \cdot \text{dm}^{-3}$

$$c = \frac{m}{MV}$$

$$\checkmark 0,072 = \frac{m}{106 \times 0,025}$$

$$m = 0.1908 g \checkmark$$
 (4)

Marking criteria:

✓ substitution of 5,13✓ correct answer

✓ correct calculation of mass

9.1.5 Positive marking from Question 9.1.2

% Na₂CO₃ =
$$\frac{\text{Actual mass}}{\text{Original mass}} \times 100$$

= (10)(0,0018)(106) = 1,908 g Na₂CO₃ ×

 $= \frac{1,908}{5,13} \checkmark x 100$

= 37,19 % **√**

Or

25 cm₃ has 0,1908 g✓

250 cm₃ has $10\sqrt{x}$ 0,1908 g = 1,908 g \sqrt{x}

% Na₂CO₃ =
$$\frac{1,908}{5,13}$$
 x 100 \checkmark = 37,19 % \checkmark (3)

9.2
$$CO_3^{2^-} + H_2O \rightleftharpoons HCO_3^- + OH^- \checkmark reactants; \checkmark products$$
 OR $CO_3^{2^-} + 2H_2O \rightleftharpoons H_2CO_3^- + 2OH^-$ (2) [15]

10.1.1	Total percentage mass fertiliser in the bag ✓	(1)
10.1.2	Nitrogen, ✓ phosphorous ✓ OR potassium (Any two)	(2)
10.1.3	$% N = \frac{2}{11} \times 40 \checkmark$	
	= 7,27 % ✓	(3)
10.2.1	Ammonium nitrate or NH ₄ NO ₃ ✓	(1)
10.2.2	Haber process	(1)
10.2.3	(NH4)2SO4 ✓	(1)
10.2.4	Ostwald process ✓ OR catalytic oxidation of ammonia	(1)
10.2.5	So that plants can absorb them from the soil ✓	(1)
10.2.6	Eutrophication ✓ Any given examples that apply to rivers and dams. Note: do not accept red tide.	(1)
10.2.7	Nitrogen ✓ and hydrogen ✓	(2)
10.2.8	Sulphur dioxide ✓	(1)
10.2.9	Enhance growth of crops / plants to produce more food for humans ✓ Production of fertiliser results in job creation. ✓ Selling of fertilisers stimulates the economy. ✓ (Any relevant positive impact)	(3) [18]
	10.1.2 10.1.3 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6	10.1.2 Nitrogen, ✓ phosphorous ✓ OR potassium (Any two) 10.1.3 % N = 2 / 11 x 40 ✓ 2 = 7,27 % ✓ 10.2.1 Ammonium nitrate or NH4NO3 ✓ 10.2.2 Haber process 10.2.3 (NH4)2SO4 ✓ 10.2.4 Ostwald process ✓ OR catalytic oxidation of ammonia 10.2.5 So that plants can absorb them from the soil ✓ 10.2.6 Eutrophication ✓ Any given examples that apply to rivers and dams. Note: do not accept red tide. 10.2.7 Nitrogen ✓ and hydrogen ✓ 10.2.8 Sulphur dioxide ✓ 10.2.9 Enhance growth of crops / plants to produce more food for humans ✓ Production of fertiliser results in job creation. ✓ Selling of fertilisers stimulates the economy. ✓

TOTAL: 150