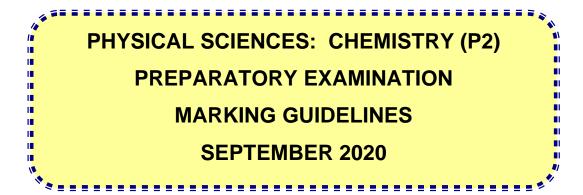



You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



education

Department: Education PROVINCE OF KWAZULU-NATAL

> NATIONAL SENIOR CERTIFICATE

GRADE 12

Time: 3 hours

Marks: 150

NB. This marking guideline consists of 10 pages.

Physical Science P2

NSC Preparatory Examination 2020

QUESTION 1

1.1	D✓✓	(2)
1.2	C✓✓	(2)
1.3	D✓✓	(2)
1.4	C√√	(2)
1.5	A√✓	(2)
1.6	C√√	(2)
1.7	A√✓	(2)
1.8	B√√	(2)
1.9	D√√	(2)
1.10	$D\checkmark\checkmark$	(2)

[20]

QUESTION 2

	\checkmark \checkmark			
2.1	3,3-diethylhexane			(2)
2.2	A and D \checkmark			(1)
2.3	B✓			(1)
2.4	H CI I ↓ I H−C=C−H	whole structure √	chloroethene √	
	H-0=0-H			(3)
2.5	formyl group ✓			(1)
2.6	C ✓			(1)
2.7	propan-2-ol√/2-propanol			(1)

[10]

- 3.1 Temperature at which the vapour pressure of a substance is equal to the (2) atmospheric pressure. $\checkmark \checkmark$
- 3.2 How does the type of <u>functional group</u> affect the <u>boiling point</u> of an organic compound?

OR What is the relationship between the <u>functional groups</u> of different organic compounds and their <u>boiling points</u>?

Dependent and independent variable correctly identified i.e. boiling	\checkmark
point and functional group	
Relationship between dependent and independent variables given	\checkmark
in the form of a question that cannot be answered by YES or NO.	

3.3 Molecular mass ✓ (1)
3.4 Compound A has London/induced dipole forces ✓ whereas compound B has London forces and <u>hydrogen bonds</u>. ✓ Hydrogen bonds are stronger that London forces. ✓ (4) Therefore <u>more energy</u> is required to overcome the intermolecular forces in compound B. ✓

3.5 Higher than. \checkmark (-) The lower the boiling point, the higher the vapour pressure. \checkmark (2)

3.6 Lower than. ✓

Compound C has only one site for hydrogen bonding while compound B has (3) two sites for hydrogen bonding. ✓ therefore more energy required to separate molecules of B✓

[14]

(2)

4.2.1 hydrohalogenation \checkmark (1)

4.2.2

н (с	с)н н		
ı (ı	сі)нн	✓ whole structure	
Н−С−С	С-С-С-Н		(4)
I		\checkmark \checkmark	
Н	нн	9-chloro-9-methylhutene	

4.3.1 Pt / Pd /Ni /platinum/palladium/nickel ✓ (1)

- 4.3.2 2-methylbutane (2)
- 4.4.1 <u>Dilute H₂SO₄ $\checkmark \checkmark / \underline{dilute H_3PO_4} \checkmark \checkmark$ </u> Mild heat \checkmark (2) excess water \checkmark <u>H₂SO₄ \checkmark OR H₃PO₄ \checkmark </u>

4.4.3 Tertiary. ✓
 The -OH/hydroxyl group is joined to the carbon that is joined to 3 other (2) carbon atoms. ✓

4.4.4

$$H \rightarrow H H$$

$$H - C - C = C - H$$

$$H - C - H$$

$$(4)$$

[19]

5.1.1 Heptanoic acid ✓✓ / hexanoic acid

5.1.2

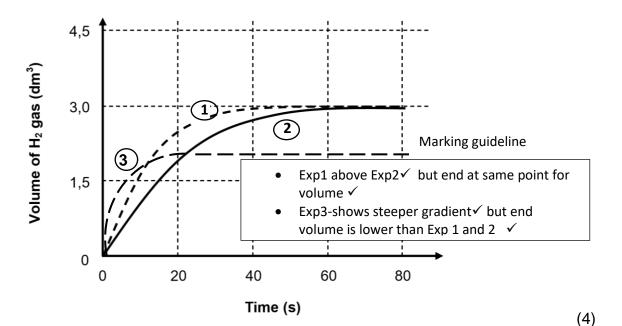
5.2.1	The breaking of organic molecules into smaller more useable units. $\checkmark\checkmark$	(2)
5.2.2	thermal✓	(1)
5.2.3	pentene / pent-1-ene / pent-2-ene ✓✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	(2)
5.2.4	$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$	(3)

(2)

5 NSC

6.1	6.1 Change in concentration / mass / moles/ amount/ volume of reactants			
	(or products) per unit time. $\checkmark \checkmark$	(2)		
6.2	3,0 dm³ ✓	(1)		
6.3	Rate of Reaction = $\frac{\Delta V}{\Delta t}$			
	$= 30 - 0 \checkmark$			

$$= 0.15 \,\mathrm{dm^{3} \cdot s^{-1}} \checkmark$$
 (3)


6.4 Increases ✓

A higher concentration means that there is a greater number of particles per unit volume.

20 - 0 🗸

This leads to an increase in the number of collisions per unit time \checkmark .

This leads to an increase in the number of effective collisions per unit time. \checkmark (4) 6.5

[14]

Physical Science P2

7.1	x axis- Kinetic Energy (of molecules)✓	
	y axis- % of molecules/no of particles✓	(2)
7.2	T₂√	(1)
7.3	It indicates the percentage of molecules that have more energy than the activation energy at a specific temperature. / It is the percentage of molecules that are capable of effective collisions. \checkmark	(1)
7.4	The area under the curves remains the same. \checkmark The number of molecules in the reaction mixture stays the same/does not change. \checkmark	(2)
7.5	There are no molecules/particles with ZERO energy. \checkmark	(1)
		[7]
QUE	STION 8	
8.1	When the equilibrium in a closed system is disturbed, the system will reinstate a new equilibrium by favouring the reaction that will oppose the disturbance. \checkmark	(2)
8.2	Brown√	(1)
8.3	Endothermic. \checkmark An increase in temperature will favour the endothermic reaction in an equilibrium reaction. \checkmark	I

Since an increase in temperature resulted in an increase in the value of Kc, \checkmark	
It can be concluded that the forward reaction is favoured \checkmark	(4)

8.4 Add a catalyst√

Increase the pressure. ✓ Increase concentration of reactant (any two)

7 NSC 8.5

	N2O4	NO ₂
Ratio	1	2
Initial mass	84,64g	0
Initial mole	<u>84,64</u> 92 ✓ = 0,92 mol	0
Change in mole	0,19√	0,38
Moles at equilibrium	0,73mol	0,38mol
Equilibrium concentration (mol.dm ⁻³)	<u>0,73</u> 2 = 0,365	$\frac{0.38}{2} = 0.19 \checkmark$

Kc =
$$[\underline{NO_2}]^2 \checkmark$$

 $[N_2O_4]$
= $(\underline{0,19})^2 \checkmark$
 $0,365$
= $0,1 \checkmark$ (9)
Therefore the temperature is $300K\checkmark$

8.6 Remains the same. ✓

Only change in temperature affects Kc. ✓✓

[21]

(3)

QUESTION 9

9.1	A standard solution is one whose concentration is precisely known. \checkmark	(2)
• • •		(-)

9.2 (C x V) dilute = (C x V) conc
Cdilute =
$$(C \times V)$$
 conc
Vdilute
= 0.63×0.05 \checkmark
1 \checkmark

$$= 0,0315 \text{ mol.dm}^{-3}$$
 (3)

option 2

9.3 Positive marking from Q9.2

$$n_{NaOH} = C \times V$$

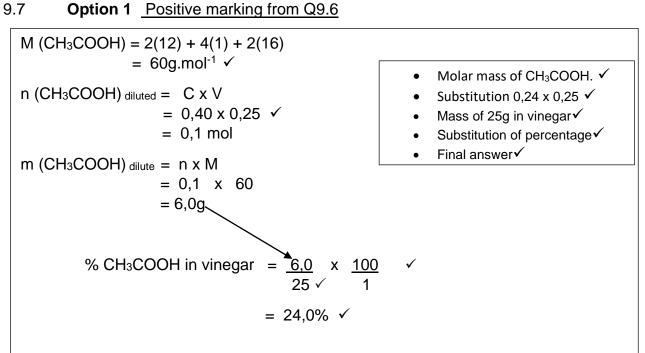
= 0,0315 x 0,04 \checkmark
= 1,26 x 10⁻³mol \checkmark

NaOH: N C2H2O4

2 : 1 $n_{C_{2H_{2O_{4}}}} = 6,3 \times 10^{-4} \text{mol } \checkmark$ $m_{C_{2H_{2O_{4}}}} = n \times M \checkmark$ $= 6,3 \times 10^{-4} \times 90 \checkmark$ = 0,0567g% purity $= 0,0567 \checkmark \times 100$ $0,25 \qquad 1$

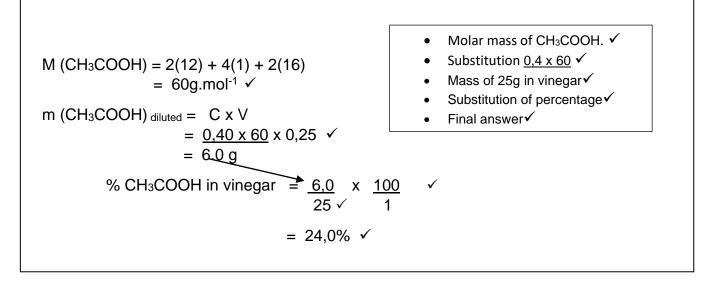
(7)

9.4


option 1

 $Kw = [H_3O^+][OH^-] = 1x10^{-14} \checkmark$ $pOH = -log[OH^{-}] \checkmark$ $1 \times 10^{-14} = [H_3O^+] (0,20)$ $= -\log(0,2)$ $[H_3O^+] = 5 \times 10^{-14}$ = 0,70 ✓ \checkmark = -log [H₃O⁺] ✓ pН pH + pOH = 14 ✓ $= -\log(5 \times 10^{-14})$ pH + 0,70 = 14= 13,3 ✓ (4) = 13,3 ✓ pН

9.5 Is the point in a titration where the indicator changes colour. $\checkmark \checkmark$ (2)


9.6
$$\frac{C_a V_a}{C_b V_b} = \frac{n_a}{n_b}$$
• Sub on LHS $\checkmark \checkmark$
• Sub no moles on RHS \checkmark
• Answer with unit \checkmark
C_a = 0.40 mol.dm⁻³ \checkmark

(4)

9.8.1 reaction of a salt with water
$$\checkmark \checkmark$$
 (5) (2)

	✓ (LHS)		✓ (RHS)	
9.8.2 CH ₃ COO ⁻	+ H ₂ O	⇆	CH₃COOH + OH ⁻	(3)
pH will incre	ease√			

[32]

TOTAL MARKS: 150