

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

DEPARTMENT OF EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
PREPARATORY EXAMINATION
SEPTEMBER 2020

.....................

MARKS: 150

TIME: 3 hours

This question paper consists of 16 pages and 4 data sheets

Copyright reserved Please page over

INSTRUCTIONS AND INFORMATION

- 1. Write your NAME in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. You may use a non-programmable calculator.
- 5. YOU ARE ADVISED TO USE THE ATTACHED DATA SHEETS.
- 6. Number the answers correctly according to the numbering system used in this question paper.
- 7. Give brief motivations, discussions, et cetera where required.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Write neatly and legibly.

QUESTION 1: MULTIPLE- CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A - D) next to the question number (1.1 - 1.10) in the ANSWER BOOK.

1.1 Consider the organic compound below.

$$C\ell$$
 I $H_3C-CH-CH_2-CH-CH_2OH$ I CH_3

The IUPAC name of this compound is:

- A 4-chloro-1-methyl pentan-1-ol
- B 2-chloro-4-methyl pentan-2-ol
- C 4-chloro-2-methyl pentan-1-ol
- D 2-methyl-4-chloro butan-2-ol

1.2 Each of the reactions below represenst a cracking reaction of C₁₅H₃₂. During which reaction are two different alkenes produced?

A
$$C_{15}H_{32} \rightarrow C_8H_{18} + C_7H_{14}$$

B
$$C_{15}H_{32} \rightarrow C_2H_2 + C_5H_{10} + C_8H_{18} + H_2$$

C $C_{15}H_{32} \rightarrow C_7H_{16} + C_8H_{16}$

D
$$C_{15}H_{32} \rightarrow 2C_2H_4 + C_3H_6 + C_8H_{18}$$
 (2)

1.3 The monomer of polythene is:

- A Ethane
- B Ethene
- C Propene
- D Poly-ethene (2)

(2)

1.4 Which ONE of the following combinations of values for activation energy (E_a) and heat of reaction (ΔH) is possible for a reaction?

	ACTIVATION ENERGY (E _A) (kJ·mol ⁻¹)	HEAT OF REACTION (ΔΗ) (kJ·mol ⁻¹)
Α	100	-50
В	100	+100
С	50	+50
D	50	+100

(2)

1.5 Consider the reaction represented by the following chemical equation:

$$CuO(s) + H_2SO_4(aq) \rightarrow CuSO_4(aq) + H_2O(\ell)$$

Which ONE of the following changes will have **no** influence on the rate of this reaction?

- A Decreasing the temperature.
- B Decreasing the pressure on the system.
- C Increasing the concentration of the acid.
- D Using copper oxide powder instead of copper oxide pieces.

(2)

(2)

1.6 The reaction which is represented by the balanced equation below, has reached equilibrium in a closed container.

$$H_2(g) + I_2(g) \leftrightarrows 2HI(g)$$
 $\Delta H < 0$

How will the equilibrium be influenced if first the volume of the container is decreased and then the temperature is increased?

- A Initially there is no change and then the reverse reaction is favoured.
- B The reverse reaction is favoured by both changes.
- C Initially there is no change and then the forward reaction is favoured.
- D Initially the reverse reaction is favoured and then the forward reaction is favoured.

1.7 Consider the equation:

$$CaO(s) + SO_2(g) = CaSO_4(s)$$

If the equilibrium concentration of SO₂(g) at 25 °C is equal to x mol·dm⁻³, then the value of the equilibrium constant at this temperature will be equal to:

- A x
- B x^2
- $C = \frac{1}{x}$
- $D = \frac{1}{x^2} \tag{2}$

1.8 The decomposition reaction of a hypothetical compound $AX_3(g)$, which is represented by the following equation, reaches equilibrium in a closed container at a temperature T_1 .

$$2AX_3(g) \leftrightarrows 2AX_2(g) + X_2(g)$$

The temperature is increased and the system again reaches equilibrium at a temperature T_2 . The change in the rates of the forward and reverse reactions are represented by the graph below.

Which ONE of the following combinations regarding the forward reaction and the K_c value is correct?

	The forward reaction is:	Change in K _c value
Α	Exothermic	K_c at $T_1 < K_c$ at T_2
В	Exothermic	K_c at $T_1 > K_c$ at T_2
С	Endothermic	K_c at $T_1 < K_c$ at T_2
D	Endothermic	K_c at $T_1 > K_c$ at T_2

(2)

1.9 Consider the following ionic reaction:

$$NH_3 + H_2O \leftrightarrows NH_4^+ + OH^-$$

Which ONE of the following combinations represents a conjugated acid-base pair?

- A NH_3 ; NH_4^+
- B NH₃; H₂O
- C H_2O ; NH_4^+
- D NH_3 ; OH^- (2)
- 1.10 During a certain neutralisation reaction, 1 mole of base is used up for every 2 moles of acid. Which ONE of the following pairs can possibly be the base and the acid?
 - A NaOH and (COOH)₂
 - B Ba(OH)₂ and CH₃COOH
 - C Na₂CO₃ and H₂SO₄
 - D KOH and HNO₃

(2) **[20]**

(2)

(3)

(2)

QUESTION 2 (Start on a new page)

Consider the condensed structural formula of a halo-alkane below.

CH₃CH₂C(CH₃)CH₃ I Br

- 2.1.1 Is this halo-alkane a PRIMARY, SECONDARY or TERTIARY halo-alkane?Give a reason for the answer.
- 2.1.2 Write down the IUPAC name of this compound.
- 2.1.3 Write down the IUPAC name of the MAJOR ORGANIC PRODUCT which forms when this compound undergoes an elimination reaction.
- 2.2 The IUPAC name of an organic compound is propyl butanoate.
 - 2.2.1 Define the term *homologous series*. (2)
 - 2.2.2 To which homologous series does this compound belong? (1)
 - 2.2.3 Write down the STRUCTURAL FORMULA of this compound. (2)
 - 2.2.4 Give the IUPAC names of the organic acid and alcohol which react to form propyl butanoate. (2)
 - 2.2.5 Write down the condensed structural formula of the functional isomer of propyl butanoate. (2)
- 2.3 Use MOLECULAR FORMULAE and write the balanced equation for the complete combustion of C_4H_{10} . (3) [19]

Copyright reserved

QUESTION 3 (Start on a new page)

Compounds A to E, indicated in the table below, are used during two investigations to determine the factors which influence boiling point.

Investigation		Compound	Molecular mass (g·mol ⁻¹)	Boiling point (°C)
	Α	2,2-dimethyl propane	72	9
I	В	2-methyl butane	72	27
	С	pentane	72	36
II	D	CH ₃ CH ₂ CH ₂ CH ₂ OH	74	117
	Ε	CH ₃ CH ₂ CH ₂ CHO	72	75

	3.1	Compounds A	B and C are structural iso	omers. Write down the
--	-----	-------------	----------------------------	-----------------------

To which homologous series does compound **E** belong?

than that of compound **E**.

	3.1.1	Definition of the term structural isomer	(2)
	3.1.1	GENERAL FORMULA of the homologous series to which these compounds belong	(1)
	3.1.2	Type of structural isomerism illustrated by these compounds	(1)
3.2	Consider	the boiling points of the compounds in investigation I.	
	3.2.1	Define the term boiling point.	(2)
	3.2.2	Write down the independent variable for this investigation.	(1)
	3.2.3	Write down one control variable for this investigation.	(1)
	3.2.4	Explain fully why the boiling points increase from compound ${\bf A}$ to compound ${\bf C}.$	(3)
	3.2.5	Which one of compounds A or C will have the highest vapour pressure at a certain temperature? Refer to the data in the table and give a reason for the answer.	(2)

Consider investigation **II**. Refer to the type of Van Der Waals forces in each of the compounds and explain why the boiling point of compound **D** is higher

Copyright reserved

3.3

3.4

(1)

(3) **[17]**

QUESTION 4 (Start on a new page)

In the flow diagram below, prop-1-ene is used as a starting compound for the preparation of other organic compounds. **P** to **T** represent chemical reactions.

4.1 Name the type of reaction represented by:

4.1.1	D	(1)
4.1.1	Г	(1)

$$\mathbf{4.1.3} \qquad \mathbf{Q} \tag{1}$$

$$4.1.4 \qquad \mathsf{T} \tag{1}$$

4.2 For reaction **P**, write down the:

4.3 For reaction **R**, write down:

4.4 During reaction **T**, the halo-alkane reacts in the presence of a base to form the alcohol in QUESTION 4.2.2. Write down the:

[18]

QUESTION 5 (Start on a new page)

- 5.1 A reaction takes place in a test tube and the test tube becomes cold. (1)
 - 5.1.1 In terms of energy change, name the type of reaction which occurs. (1)
 - 5.1.2 Give a reason for the answer to QUESTION 5.1.1. (1)
- A learner wants to investigate the rate of a reaction.

 She places a glass beaker filled with nitric acid on a very sensitive scale in a fume cupboard. She adds a few pieces of copper to the beaker. The mass of the beaker and its contents are measured every 15 s from the instant that the copper is added to the beaker until the copper has been used up.

The following results are obtained.

Time (s)	Mass of the beaker and contents (g)	Decrease in mass (g)				
0	114,6	0,0				
15	114,0	0,6				
30	112,4	2,2				
45	110,4	4,2				
60	109,4	5,2				
75	108,7	5,9				
90	108,4	6,2				
105	108,3	6,3				
120	108,3	6,3				
135	108,3	6,3				
150	108,3	6,3				

The reaction which occurs are represented by the following reaction:

$$Cu(s) + 4HNO_3(aq) \rightarrow Cu(NO_3)_2(aq) + 4NO(g) + 2H_2O(\ell) \Delta H>0$$

- 5.2.1 Give a reason why the mass of the beaker and its contents DECREASES. (1)
- 5.2.2 Use the values in the table and calculate the average rate of the reaction in $g \cdot s^{-1}$ for the total duration of the reaction. (3)

Study the graph below which shows decrease in mass against time.

5.2.3 Give a reason for the shape of the graph from 105 s to 120 s. (1)

5.2.4 Give a reason why the rate of the reaction INCREASES from 0 s to 30 s. (1)

5.2.5 Give a reason why the rate of the reaction DECREASES from 45 s to 105 s. (1)

5.2.6 Use the collision theory to explain the answer to QUESTION 5.2.5. (2)

5.2.7 Calculate the mass of copper used during this reaction.

5.2.8 Except for adding a catalyst, name THREE other changes which can be made n order to INCREASE the rate of this reaction. (3)

5.3 Another learner adds 100 cm³ HCl of concentration 0,25 mol·dm⁻³ to an excess of Na₂S₂O₃(aq) and 0,24 g of sulphur is deposited. The equation for the reaction is:

$$Na_2S_2O_3(aq) + 2 HCl(aq) \rightarrow 2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$$

Calculate the PERCENTAGE YIELD of sulphur.

(6) **[25]**

(4)

(2)

QUESTION 6 (Start on a new page)

Consider the following equation for the decomposition of ozone (O₃).

$$2O_3(g) \leftrightarrows 3O_2(g)$$

- 6.1 State Le Chatelier's principle.
- 6.2 Use Le Chatelier's principle and explain how an increase in pressure will influence the amount of ozone at equilibrium. (3)
- An increase in the temperature causes a decrease in the amount of oxygen.
 - 6.3.1 Which reaction is favoured by the increase of temperature?

 Choose from FORWARDS or BACKWARDS. (1)
 - 6.3.2 Is the forward reaction ENDOTHERMIC or EXOTHERMIC? (1)
 - 6.3.3 What will happen to the value of the equilibrium constant?
 Choose from INCREASES, DECREASES or REMAINS THE SAME.

 (1)
- 6.4 Define the term *catalyst*. (2)
- 6.5 Explain how the addition of a suitable catalyst will influence the amount of oxygen at equilibrium. (2)

Ozone (O₃) reacts with nitrogen oxide (NO) as indicated in the reaction below.

$$O_3(g) + NO(g) \leftrightarrows O_2(g) + NO_2(g)$$
 $\Delta H < 0$ BROWN

Note that O_3 , NO and O_2 are all colourless gases while NO_2 is a brown gas. The colour of the gas mixture is light brown.

6.6 A mixture of the four gases is prepared in a 2 dm³ sealed container with the following initial concentrations:

$$[O_3] = 0.6 \text{ mol} \cdot \text{dm}^{-3}$$
 $[NO] = 0.9 \text{ mol} \cdot \text{dm}^{-3}$

$$[O_2] = 0.73 \text{ mol·dm}^{-3}$$
 $[NO_2] = 0.55 \text{ mol·dm}^{-3}$

The mixture is then heated to 1500 K. After equilibrium is established, it is found that the concentration of NO is 0,36 mol·dm⁻³.

Use the information given and calculate the value of the equilibrium constant (7) at 1500 K.

A number of changes are made to the equilibrium mixture and the mixture is allowed to reach a new equilibrium after each change.

Choose from INCREASES, DECREASES or REMAINS THE SAME to answer each of the following questions.

6.7.5	$Ar(g)$ is pumped into the container. What happens to the concentration of O_2 gas?	(1) [24]
6.7.4	O ₂ gas is added to the container. What happens to the intensity of the brown colour?	(1)
6.7.3	The temperature is increased. What happens to the initial rate of the forward reaction?	(1)
6.7.2	The pressure in the container is decreased. What happens to the number of moles of O_3 ?	(1)
6.7.1	NO gas is added to the container. How does the yield of NO ₂ gas change?	(1)

QUESTION 7 (Start on a new page)

'A learner wants to determine the percentage ethanoic acid (CH₃COOH) in vinegar. The following apparatus is used:

- 7.1 Name **Q** in the above diagram.
- 7.2 The following indicators are available:

INDICATOR	pH-RANGE OF COLOUR CHANGE
Α	3,1 - 4,4
В	6,0 - 7,6
С	8,3 - 10,0

Which ONE of the indicators (**A**,**B** or **C**) above is most suited to indicate the exact endpoint of this titration?

Give a reason for the answer

(2)

(1)

The learner adds 7,5 g commercial vinegar to 100 cm³ of water.

25 cm³ of this solution is neutralised by 28,5 cm³ of a 0,11 mol·dm⁻³ sodium hydroxide (NaOH) solution.

The balanced equation for this reaction is:

NaOH (aq) + CH₃COOH (aq)
$$\rightarrow$$
 CH₃COONa + H₂O

- 7.3 Ethanoic acid is a weak acid. Define a *weak acid*. (2)
- 7.4 Calculate the pH of the sodium hydroxide solution. (5)
- 7.5 Calculate the number of moles of sodium hydroxide which are used to neutralise 25 cm³ of acid. (2)
- 7.6 Calculate the percentage ethanoic acid in the vinegar. (5)

 [17]

QUESTION 8 (Start on a new page)

Concentrated sulphuric acid (H₂SO₄) is added to pure water at 25 °C. The pH of the solution is 1,6.

- 8.1 Is sulphuric acid a MONOPROTIC or a DIPROTIC acid? (1)
- 8.1 Calculate the concentration of the sulphuris acid solution. (3)
- 8.2 Ammonium chloride crystals (NH₄Cl) are dissolved in water and undergo hydrolysis.
 - 8.2.1 Define the term *hydrolysis*. (2)
 - 8.2.2 Is ammonium chloride ACIDIC or BASIC in solution?

 Explain your answer with the help of an equation. (4)

GRAND TOTAL: 150

[10]

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	p ^θ	1,013 x 10⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{c_a v_a}{c_b v_b} = \frac{n_a}{n_b}$	pH = -log[H3O+]

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}^{\theta}_{\text{cell}} = \mathsf{E}^{\theta}_{\text{cathode}} \ - \, \mathsf{E}^{\theta}_{\text{anode}} \ / \, \mathsf{E}^{\theta}_{\text{sel}} = \mathsf{E}^{\theta}_{\text{katode}} \ - \, \mathsf{E}^{\theta}_{\text{anode}}$$

or/of

$$E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} \ - E_{\text{oxidation}}^{\theta} \ / E_{\text{sel}}^{\theta} = E_{\text{reduksie}}^{\theta} \ - E_{\text{oksidasie}}^{\theta}$$

or/of

$$\mathsf{E}^{\theta}_{\text{cell}} = \mathsf{E}^{\theta}_{\text{oxidising agent}} - \mathsf{E}^{\theta}_{\text{reducing agent}} / \mathsf{E}^{\theta}_{\text{sel}} = \mathsf{E}^{\theta}_{\text{oksideermi ddel}} - \mathsf{E}^{\theta}_{\text{reduseermi ddel}}$$

TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (I)	(2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
2,1	1 H 1							KEY/ <i>SLEU</i>	TEL	Atomic nu 29	umber										2 He 4
1,0	3 Li 7	1,5	4 Be 9					Electrone	egativity_	7	u 3,5	Symbol				2.0 B 11	5.5 C 12	7 0.ε N 14	3.5 0 16	0.4 19 9	10 Ne 20
6,0	11 Na 23	1,2	12 Mg 24					-	Approxima							13 27 27	8. Si 28	2.2 P 31	5.5 32	⊖ 17 ⊖ Cℓ 35,5	18 Ar 40
8,0	19 K 39	1,0	20 Ca 40	1,3	21 Sc 45	1,5	22 Ti 48	9. V 51	9 Cr 52	بن <u>25</u> Mn 55	26 Fe 56	∞ Co 59	28 Mi 59	ල Cu 63,5		9. Ga 70	∞. Ge 73	33 6 As 75	2, Se 34	80 80 80	36 Kr 84
8,0	37 Rb 86	1,0	38 Sr 88	1,2	39 Y 89	1,4	40 Zr 91	41 Nb 92	∞ Mo 96	ල Tc	744 77 Ru 101	25 Rh 103	46 77 Pd 106	ජි Ag 108	248 Cd 112	49 In 115	119	51 Sb 122	52 Te 128	53 S: I 127	54 Xe 131
2,0	55 Cs 133	6,0	56 Ba 137		57 La 139	1,6	72 Hf 179	73 Ta 181	74 W 184	75 Re 186	76 Os 190	77 Ir 192	78 Pt 195	79 Au 197	80 Hg 201	81 ∞ Tℓ 204	82 Pb 207	ල Bi 209	84 0. Po	85 At	86 Rn
2,0	87 Fr	6,0	88 Ra 226		89 Ac			58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
				<u>I</u>				140	141	144	93	150	152 95	157 96	159	163 98	165	167	169	173 102	175
								Th 232	Pa	U 238	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARDREDUKSIEPOTENSIALE

ABEL 4A: STANDAARDREDUKSIEPUTENSIAL						
Half-reactions	Ε ^θ (V)					
F ₂ (g) + 2e ⁻		2F ⁻	+ 2,87			
Co ³⁺ + e ⁻		Co ²⁺	+ 1,81			
H ₂ O ₂ + 2H ⁺ +2e ⁻	\rightleftharpoons	2H ₂ O	+1,77			
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51			
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ [–]	+ 1,36			
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	$2Cr^{3+} + 7H_2O$	+ 1,33			
O ₂ (g) + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+ 1,23			
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23			
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20			
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+ 1,07			
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96			
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85			
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80			
$NO_3^- + 2H^+ + e^-$	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80			
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77			
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68			
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54			
Cu+ + e-	\rightleftharpoons	Cu	+ 0,52			
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+ 0,45			
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+ 0,40			
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34			
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17			
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+ 0,16			
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15			
S + 2H ⁺ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14			
2H⁺ + 2e⁻			0,00			
Fe ³⁺ + 3e ⁻			- 0,06			
Pb ²⁺ + 2e ⁻		Pb	- 0,13			
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14			
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27			
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28			
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40			
Cr ³⁺ + e ⁻	<i>→</i>	Cr ²⁺	- 0,41			
Fe ²⁺ + 2e ⁻	=		- 0,44			
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74			
Zn ²⁺ + 2e ⁻	<u></u>	Zn	- 0,76			
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83			
Cr ²⁺ + 2e ⁻ Mn ²⁺ + 2e ⁻	 	Cr Mn	- 0,91			
$A\ell^{3+} + 3e^{-}$	 	Al	- 1,18 - 1,66			
$Mg^{2+} + 2e^{-}$	←	Mg	- 1,66 - 2,36			
Na ⁺ + e ⁻	←	Na Na	- 2,30 - 2,71			
Ca ²⁺ + 2e ⁻	+	Ca	- 2,87			
Sr ²⁺ + 2e ⁻	←	Sr	- 2,89			
Ba ²⁺ + 2e ⁻	←	Ba	- 2,90			
Cs ⁺ + e ⁻	+	Cs	- 2,92			
K+ + e-	, =	K	- 2,93			
Li ⁺ + e ⁻	=	Li	- 3,05			

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARDREDUKSIEPOTENSIALE

Half-reactions	Ε ^θ (V)		
Li ⁺ + e ⁻	, =	Li	- 3,05
K+ + e⁻	+	K	- 2,93
Cs ⁺ + e ⁻		Cs	- 2,92 2,00
Ba ²⁺ + 2e ⁻		Ba	- 2,90
Sr ²⁺ + 2e ⁻	<u></u>	Sr O-	- 2,89
Ca ²⁺ + 2e ⁻	, =	Ca	- 2,87
Na+ + e-	=		- 2,71
Mg ²⁺ + 2e ⁻		Mg	- 2,36
Al³+ + 3e ⁻ Mn²+ + 2e ⁻		Al	- 1,66
Cr ²⁺ + 2e	† †	Mn Cr	- 1,18
2H ₂ O + 2e ⁻			- 0,91
Zn ₂ O + 2e Zn ²⁺ + 2e ⁻	=	H₂(g) + 2OH⁻ Zn	- 0,83
Cr ³⁺ + 3e ⁻	=	Cr	- 0,76
Fe ²⁺ + 2e ⁻	 	_	- 0,74 - 0,44
Cr ³⁺ + e ⁻			- 0, 44 - 0,41
Cf + e Cd ²⁺ + 2e ⁻			-0,41 -0,40
Co ²⁺ + 2e ⁻	←	Co	- 0,40 - 0,28
Ni ²⁺ + 2e ⁻		Ni	- 0,28 - 0,27
Sn ²⁺ + 2e ⁻	←	Sn	- 0,2 <i>1</i> - 0,14
Pb ²⁺ + 2e ⁻	←	Pb	-0,14
Fe ³⁺ + 3e ⁻	←	Fe	- 0,13 - 0,06
2H+ + 2e-	+		0,00
S + 2H ⁺ + 2e ⁻			+ 0,14
Sn ⁴⁺ + 2e ⁻	+	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	, =	Cu ⁺	+ 0,16
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	\rightleftharpoons		+ 0,17
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34
$2H_2O + O_2 + 4e^-$	\rightleftharpoons	40H ⁻	+ 0,40
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H ₂ O	+ 0,45
Cu+ + e-	\rightleftharpoons	Cu	+ 0,52
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54
$O_2(g) + 2H^+ + 2e^-$	\rightleftharpoons	H_2O_2	+ 0,68
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
NO ₃ + 2H ⁺ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^-$		2Br ⁻	+ 1,07
Pt ²⁺ + 2 e ⁻	\rightleftharpoons	Pt	+ 1,20
$MnO_2 + 4H^+ + 2e^-$	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	\rightleftharpoons	2H₂O	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	$2Cr^{3+} + 7H_2O$	+ 1,33
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+ 1,36
MnO ₄ + 8H+ + 5e ⁻	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons		+1,77
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	\rightleftharpoons	2F-	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë