SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

MARKING MEMORANDUM

QUESTION 1
$1.1 \quad D \checkmark \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
$1.3 \quad C \checkmark \checkmark$
1.4 A $\checkmark \checkmark$
$1.5 B \checkmark \checkmark$
$1.6 B \checkmark \checkmark$
1.7 A $\checkmark \checkmark$
1.8 C $\checkmark \checkmark$
$1.9 \mathrm{D} \checkmark \checkmark$
$1.10 C \checkmark \checkmark$

QUESTION 2

2.1

1 mark per arrow and label

 subtract 1 mark for each of the following errors:- no dot shown
- T shown with its components (unless components in dashed lines)

2.2 When a resultant (net) force acts on an object, the object will accelerate in the direction of the force. This acceleration is directly proportional to the force \checkmark and inversely proportional to the mass \checkmark of the object. OR
The resultant/net force acting on an object is equal to the rate of change of momentum of the object $\checkmark \checkmark$ in the direction of the resultant/net force. (2 or 0)
$2.3 \quad f_{\mathrm{s}}^{\text {max }}=\mu_{s} F_{N}$
$120=(0,34) F_{N} \checkmark$
$F_{N}=352,9412 N$
Vertical forces; taking up as positive
$\vec{F}_{\text {net }, y}=0$
$\overrightarrow{\mathrm{T}}_{\mathrm{y}}+\overrightarrow{\mathrm{F}}_{\mathrm{N}}+\overrightarrow{\mathrm{F}}_{\mathrm{g}}=0 \checkmark$
$\mathrm{Ty}+\mathrm{F}_{\mathrm{N}}-\mathrm{mg}=0$
$\mathrm{Ty}+352,9412 \checkmark-(50)(9,8) \checkmark=0$
$\mathrm{Ty}=137,06 \mathrm{~N}$
2.4 Horizontal forces; taking left as positive
$\vec{F}_{\text {net }, x}=0$
$\vec{T}_{x}+\vec{f}_{\mathrm{s}}^{\text {max }}=0 \checkmark$
$T x-120=0$
$T x=120 \mathrm{~N}$
(B)

(A) / (B):

$$
\begin{aligned}
\tan \theta & =\frac{137,06 \ldots}{120} \\
& =1,14215 \ldots \\
\theta & =48,80^{\circ}
\end{aligned}
$$

Sub into (B)

OR \quad Subst into (A)
$T \cos \left(48,8^{\circ}\right)=120$
$T=182,18 \mathrm{~N}$
$T \sin \left(48,8^{\circ}\right)=137,06$
$\mathrm{T}=182,16 \mathrm{~N}$
2.5.1 DECREASES \checkmark
2.5.2 From: $T_{y}=T \sin \theta$. The angle (θ) increases \checkmark, so the vertical component of the tensional force $\left(T_{y}\right)$ will increase \checkmark.
From: $F_{N}+T_{y}=F_{g}$
θ increases/ T_{y} increases
The parcel will not push as hard into the table surface ${ }^{\checkmark}$ so the normal force will decrease in magnitude. (2)

QUESTION 3

5% energy loss so this represents 95% of the energy after the bounce.

$$
\begin{aligned}
\therefore E_{\mathrm{k}, \text { before }} & =0,8644 \times \frac{100}{95} \checkmark \\
& =0,90989 \ldots \mathrm{~J} \\
& \approx 0,91 \mathrm{~J} \quad \checkmark
\end{aligned}
$$

3.3

$$
\begin{aligned}
\left(E_{P}+E_{K}\right)_{\text {TOP }} & =\left(E_{P}+E_{\text {Kı }}\right)_{\text {воттом }} \\
{\left[m g h+1 / 2(0,05)(3)^{2}\right]_{\text {top }} } & =(0+0,91) \quad \checkmark \text { (all subst) } \\
h & =0,685 /(0,05)(9,8) \\
& =1,398 \mathrm{~m}=(0,4 \mathrm{~m})
\end{aligned}
$$

OR
Work Energy Theorem

OR

$$
\begin{equation*}
W_{n c}=\Delta E_{p}+\Delta E_{k} \tag{3}
\end{equation*}
$$

3.4

QUESTION 4

4.1 The total linear momentum \checkmark of an isolated (closed) system remains constant \checkmark (is conserved). OR In an isolated system \checkmark The total linear momentum before collision equals the total linear moment after collision.

4.2 Linear momentum conservation:

Take "towards Orion" as the positive direction:

$\left(3,6 \times 10^{19}\right)(5) \checkmark=m_{\mathrm{A}}(8) \checkmark+\left(3,6 \times 10^{19}-m A\right) \checkmark(-2)^{\checkmark}$ $10 \mathrm{~m}_{\mathrm{A}}=1,8 \times 10^{20}+7,2 \times 10^{19}$ $m_{A}=2,52 \times 10^{19} \mathrm{~kg}$

Take "towards Orion" as the positive direction:

$$
\left.\begin{array}{rl}
\sum \vec{p}_{\mathrm{i}} & =\sum \vec{p}_{\mathrm{f}} \\
M \vec{v}_{\mathrm{i}} & =m_{\mathrm{A}} \vec{v}_{\mathrm{A}, \mathrm{f}}+m_{\mathrm{B}} \vec{v}_{\mathrm{B}, \mathrm{f}}
\end{array}\right]
$$

Mass conservation:

$$
\begin{align*}
& m_{\mathrm{A}}+m_{\mathrm{B}}=M \\
& \quad m_{\mathrm{A}}+m_{\mathrm{B}}=3,6 \times 10^{19} \mathrm{~kg} \checkmark \tag{B}
\end{align*}
$$

sub (A) into (B):

$$
\begin{aligned}
2,25 \times 10^{19}+0,25 m_{\mathrm{B}}+m_{\mathrm{B}} & =3,6 \times 10^{19} \mathrm{~kg} \\
1,25 m_{\mathrm{B}} & =1,35 \times 10^{19} \mathrm{~kg} \\
m_{\mathrm{B}} & =1,08 \times 10^{19} \mathrm{~kg}
\end{aligned}
$$

sub m_{B} into (B):

$$
\begin{aligned}
m_{\mathrm{A}}+1,08 \times 10^{19} & =3,60 \times 10^{19} \\
m_{A} & =2,52 \times 10^{19} \mathrm{~kg}
\end{aligned}
$$

Take "towards Orion" as the positive

$$
\begin{align*}
& \text { direction: } \\
& \left.\begin{array}{c}
\sum \vec{p}_{\mathrm{i}}=\sum \vec{p}_{\mathrm{f}} \\
M \vec{v}_{\mathrm{i}}=m_{\mathrm{A}} \vec{v}_{\mathrm{A}, \mathrm{f}}+m_{\mathrm{B}} \vec{v}_{\mathrm{B}, \mathrm{f}}
\end{array}\right] \\
& \begin{array}{c}
\left(3,6 \times 10^{19}\right)(5)^{\checkmark} \\
=m_{\mathrm{A}}(8)+m_{\mathrm{B}}(-2)^{\checkmark} \\
1,8 \times 10^{20}+2 m_{\mathrm{B}}=8 m_{\mathrm{A}} \\
\mathrm{~m}_{\mathrm{B}}=4 \mathrm{~m}_{\mathrm{A}}-9 \times 10^{19}
\end{array}
\end{align*}
$$

Mass conservation:

$m_{\mathrm{A}}+m_{\mathrm{B}}=M$
$m_{\mathrm{A}}+m_{\mathrm{B}}=3,6 \times 10^{19} \mathrm{~kg}$
sub (A) into (B):
$m_{A}+4 m_{A}-9 \times 10^{19}=3,6 \times 10^{19}$

$$
\begin{aligned}
5 \mathrm{~m}_{\mathrm{A}} & =3,6 \times 10^{19}+9 \times 10^{19} \\
\mathrm{~m}_{\mathrm{A}} & =2,52 \times 10^{19} \mathrm{~kg}
\end{aligned}
$$

4.3 Take "towards Orion" as the positive direction:

$$
\begin{align*}
\vec{F}_{\text {net }} \Delta t & =\Delta \vec{p} \quad \checkmark \\
& =m\left(\vec{v}_{\mathrm{f}}-\vec{v}_{\mathrm{i}}\right) \\
& =\left(2,52 \times 10^{19}\right)(8-5) \checkmark \\
& =7,56 \times 10^{19} \mathrm{~N} \cdot \mathrm{~s} / \mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-1} \text { towards Orion } \checkmark \quad \text { (magnitude + direction) } \tag{3}
\end{align*}
$$

4.4

$$
\begin{aligned}
F_{g} & =\frac{G m_{\mathrm{A}} m_{\mathrm{B}}}{r^{2}} \checkmark \\
& =\frac{\left(6,67 \times 10^{-11}\right)\left(2,52 \times 10^{19}\right)\left(1,08 \times 10^{19}\right) \checkmark}{\left(150 \times 10^{3}\right)^{2} \checkmark} \\
& =8,07 \times 10^{17} \mathrm{~N}
\end{aligned}
$$

QUESTION 5

5.1 The net (total) work done on an object \checkmark is equal to the change in the object's kinetic energy. $\checkmark \mathbf{O R}$ The work done on an object by a net (resultant) force \checkmark is equal to the change in the object's kinetic energy.
5.2 $W_{\mathrm{g}}=F_{\mathrm{g}} \Delta y \cos \theta \checkmark$
$=m g \Delta y \cos \theta$
$=(75)(9,8)(2,4-1,6) \checkmark \cos 0^{\circ} \checkmark$
$=588 \mathrm{~J} \checkmark$
OR
work due to a conservative forces is equal to negative change in potential energy associated with that conservative force:

```
\(W_{\mathrm{c}}=-\Delta E_{\mathrm{p}}\)
\(W_{\mathrm{g}}=-m g\left(h_{\mathrm{f}}-h_{\mathrm{i}}\right)^{\checkmark}\)
    \(=-(75)(9,8) \checkmark(1,6-2,4) \checkmark\)
\(=588 \mathrm{~J} \checkmark\)
```

5.3

OR

$$
\begin{aligned}
W_{\mathrm{nc}} & =\Delta E_{\mathrm{p}}+\Delta E_{\mathrm{k}} \\
W_{f} & \left.=m g\left(h_{\mathrm{f}}-h_{\mathrm{i}}\right)+\frac{1}{2} m\left(v_{\mathrm{f}}^{2}-v_{\mathrm{I}}^{2}\right) \quad\right] \checkmark \\
& =(75)(9,8) \checkmark((1,6-2,4)) \checkmark+\frac{1}{2}(75)\left(\left(3,75^{2} \checkmark-0^{2}\right)\right) \checkmark \\
& =-60,66 \mathrm{~J} \quad \checkmark
\end{aligned}
$$

5.4.1 REMAINS THE SAME

5.4.2 The gravitational force is conservative (non-contact) force \downarrow, so the work done by the gravitational force will not depend on the path taken. \checkmark The starting and ending points are the same. Therefore the work done by the gravitational force will remain the same.

QUESTION 6

6.1.1 The apparent change in frequency in sound heard due to the relative motion between listener and/or source. $\checkmark \checkmark$
6.1.2

$$
\begin{gather*}
f_{L}=\left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \\
\therefore 0,93 \mathrm{xf}_{\mathrm{S}} \checkmark=\left(\frac{335-0}{335+\mathrm{v}_{\mathrm{S}}}\right) \mathrm{f}_{\mathrm{S}} \\
\therefore 0,93\left(335+\mathrm{v}_{\mathrm{S}}\right)=335 \\
\therefore 0,93 \mathrm{v}_{\mathrm{S}}=335-0,93 \times 335 \\
\therefore \mathrm{v}_{\mathrm{S}}=\frac{0,07 \times 335}{0,93}=25,22 \mathrm{~m} \cdot \mathrm{~s}^{-1} \tag{4}
\end{gather*}
$$

6.2.1 Absorption (line spectrum) \checkmark
6.2.2 Red-shift \checkmark
6.2.3 Away from \checkmark

QUESTION 7

7.1 The force of attraction or repulsion between two charges is directly proportional to the product of their charges \checkmark and inversely proportional to the square of the distance between them/their centres.
$7.2 \quad \mathrm{~F}_{\mathrm{JonK}}=\frac{\mathrm{kQ}_{\mathrm{J}}^{\mathrm{g}} \mathrm{Q}_{\mathrm{K}}}{\mathrm{r}^{2}}$

$$
=\frac{9 \times 10^{9} \times 4 \times 10^{-6} \times 2 \times 10^{-6}}{\left(0,05 y^{2}\right.}
$$

$$
\begin{equation*}
=28,8 \mathrm{~N} \quad+\mathrm{ve} \tag{4}
\end{equation*}
$$

7.4 MAGNITUDE:

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}^{2}=\left(\mathrm{F}_{\mathrm{JonK}}\right)^{2}+\left(\mathrm{F}_{\mathrm{LonK}}\right)^{2} \\
& \begin{aligned}
\therefore \mathrm{F}_{\mathrm{R}} & =\sqrt{28,8^{2}+\left(\frac{1}{2} \times 28,8\right)^{2}} \\
& =32,20 \mathrm{~N}
\end{aligned}
\end{aligned}
$$

DIRECTION
$\tan \alpha=2$,
$\therefore \alpha=63,43^{\circ} \quad \checkmark$ Angle (show tan or other method)/BEARING 206,57 ${ }^{\circ}$
7.5 The electric field at a point is the electrostatic force experienced per unit positive charge \checkmark placed at that point. \checkmark

QUESTION 8

8.1 emf \checkmark
8.2 Load voltage OR external voltage OR terminal voltage
8.3 $V=I R$
$\therefore \mathrm{r}=\frac{\mathrm{V}_{\text {int }}}{\mathrm{I}}=\frac{0,9}{4,5}$

$$
\begin{equation*}
=0,2 \Omega \tag{3}
\end{equation*}
$$

8.43Ω
same $V \checkmark$ over each resistor and $\underline{\text { is inversely proportional to } R}$
$8.5 \quad \frac{1}{\mathrm{R}_{\mathrm{P}}}=\frac{1}{R 1}+\frac{1}{R 2}+\frac{1}{\mathrm{R} 3} \checkmark$

$$
=\frac{1}{4}+\frac{1}{3}+\frac{1}{4} \quad \checkmark=\frac{3+4+3}{12}=\frac{10}{12}
$$

$\therefore \mathrm{R}_{\mathrm{P}}=\frac{12}{10}=1,2 \Omega$
$\mathrm{R}_{\text {TOTAL }}=\frac{\varepsilon}{\mathrm{I}}=\frac{18}{4,5} \downarrow /=4 \Omega$
$\mathrm{R}_{\text {TOTAL }}=\mathrm{R}+\mathrm{R}_{\mathrm{P}}+\mathrm{r}$
$\therefore 4=\mathrm{R}+1,2+0,2$
$\therefore \mathrm{R}=2,6 \Omega$
8.6 Temperature \checkmark

$$
\begin{align*}
\mathrm{V}_{\mathrm{P}} & =\mathrm{I}_{\mathrm{P}} \mathrm{R}_{\mathrm{P}} \\
& =(4,5)(1,2) \quad \checkmark \quad 18-(0,9+5,4) \\
& =5,4 \mathrm{~V} \quad \checkmark \\
\mathrm{R} & =\mathrm{V} / \mathrm{I}=11,7 / 4,5=2,6 \Omega \quad \checkmark
\end{align*}
$$

8.7 $\quad R_{P}$ increases when S_{2} is opened
so $\mathrm{R}_{\text {cir }}$ increases
so $I_{\text {cir }} /$ current strength through ammeter decreases
so $V_{\text {int }}(=\mid r)$ decreases (r constant)
so $\mathrm{V}_{\text {ext }}$ increases $\left(\mathrm{V}_{\text {ext }}=\varepsilon-\mathrm{V}_{\text {int }}\right)$

QUESTION 9

$9.10,10$ s \checkmark
$9.2 \quad V_{\mathrm{rms}}=\frac{V_{\text {max }}}{\sqrt{2}}$

$$
=\frac{84,8}{\sqrt{2}}
$$

$$
\begin{equation*}
=60 \mathrm{~V} \tag{2}
\end{equation*}
$$

9.3.1 $\quad P_{\mathrm{avg}}=V_{\mathrm{rms}}{ }^{2}$
$\therefore 40=\frac{100^{2}}{R}$
$\therefore R=250 \Omega$
9.3.2 TOO DIM \checkmark
$\mathrm{V}_{\text {rms }}$ for $\mathrm{bulb}=100 \mathrm{~V}$
BUT $\quad V_{r m s}$ of generator -60 V .
9.4

QUESTION 10

10.1 Planck's constant
10.2 Threshold frequency $\left(f_{0}\right)$ is the minimum frequency of light \checkmark needed to emit (eject) electrons \checkmark from the surface of a certain metal / material.
10.3

$$
\begin{aligned}
W_{0} & =h f_{0} \checkmark \\
& =\left(6,63 \times 10^{-34}\right)\left(1,4 \times 10^{15}\right)^{\checkmark} \\
& =9,282 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

10.4.1 The greater brightness would:

- increase the number \checkmark of photoelectrons
10.4.2 - but would have no effect on their kinetic energies / Remain the same \checkmark
10.5

$$
\begin{aligned}
E_{\mathrm{k}, \max , \mathrm{E}} & =\frac{1}{2} m_{\mathrm{e}} v_{\max , \mathrm{E}}{ }^{2} \checkmark \\
2,4 \times 10^{-18} \checkmark & =\frac{1}{2}\left(9,11 \times 10^{-31}\right) \checkmark v_{\max , \mathrm{E}}^{2} \\
v_{\max , \mathrm{E}} & =2,3 \times 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad \checkmark
\end{aligned}
$$

```
                    \(E=W_{o}+E_{k}\)
    \(1 / 2 m v^{2}=h f \quad W\)
\(1 / 2\left(9,11 \times 10^{-31}\right) v^{2} \checkmark=\left(6,63 \times 10^{-34}\right)\left(5 \times 10^{15}\right)-\left(9,282 \times 10^{-19}\right) \checkmark\)
\(v=2,29 \times 10^{6} \mathrm{~m} \cdot \mathrm{~s}^{-1}\)
```

OR
Learners can calc the gradient of the graph which $=6,67 \times 10^{-34}$ and then use above method.

