SA's Leading Past Year

Exam Paper Portal

STUD.Y

You have Downloaded, yet Another Great Resource to assist you with your Studies :

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

> SAEAMM RADPERES

testpapers.co.za

 Western CapeGovernment

Education

METRO CENTRAL EDUCATION DISTRICT

GRADE 12

PHYSICAL SCIENCES: PAPER 2 (CHEMISTRY) SEPTEMBER 2016 - MARKING GUIDELINE

MARKS: 150
TIME: 3 hours

MARKING GUIDELINE

This question MEMO consists of 12 pages.

QUESTION 1

$1.1 \quad D \checkmark \checkmark$
$1.2 \mathrm{D} \checkmark \checkmark$
$1.3 \mathrm{~A} \checkmark \checkmark$
$1.4 C \vee \checkmark$
$1.5 B \checkmark \checkmark$
$1.6 \mathrm{D} \checkmark \checkmark$
$1.7 \quad C \checkmark \checkmark$
$1.8 \quad C \checkmark \checkmark$
$1.9 \quad C \checkmark \checkmark$
$1.10 \mathrm{D} \checkmark \checkmark$

QUESTION 2

Abstract

2.1.1 There are single bonds between C -atoms \checkmark / There are no multiple bonds between C atoms in their hydrocarbon chains. $\checkmark /$ No double or triple bonds between C atoms \checkmark

2.1.2 3-chloro-3-ethylhexane
2.1.3 Propanal $\sqrt{ }$
2.1.4 carboxylic acids \checkmark
2.1.5 Methanol $\sqrt{ }$
\checkmark 3C single bonds
2.1.6

carboxylic acid functional group \checkmark
2.2.1 Propanoic acid. \checkmark
2.2.2 In 100 g there will be $9,81 \mathrm{~g} \mathrm{H} \quad, 58,85 \mathrm{~g} \mathrm{C} \quad 31,34 \mathrm{~g} \mathrm{O}$
number of moles:
$\mathrm{H}: \frac{9,81}{1}=9,81$ mole \checkmark
C: $\frac{58,82}{12}=4,904$ moles \checkmark
O: $\frac{31,37}{16}=1,959$ moles \checkmark
$\frac{9,81}{1,96}: \frac{4,90}{1,96}: \frac{1,96}{1,96}$
5 : 2,5:1
10 : 5 : $2 \checkmark$
Molar mass/Molêre massa: $10(1)+5(12)+2(16)=102 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \checkmark$ $\mathrm{n}=1$
$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2} \checkmark$

QUESTION 3

3.1 The temperature at which the vapour pressure of a substance $\sqrt{ }$ equals atmospheric pressure. \checkmark
3.2 2-methylpropan-2-ol \checkmark
3.3 London force / momentarily dipole forces/ dispersion forces \checkmark
3.4.1 In both pentane and 2-methylbutane there are weak London/ dispersion forces present. $\sqrt{ } 2$-methylbutane is more spherical / has a smaller surface area than pentane $\sqrt{ }$ and therefore there are fewer/less intermolecular forces between its molecules and the energy required to overcome the intermolecular forces in 2-methylbutane is less than the energy required to overcome the intermolecular forces in pentane. \checkmark therefore a lower boiling point \checkmark
3.4.2 2-methylpropan-2-ol have stronger hydrogen bonding between molecules \checkmark while pentane has weaker London/dispersion forces between its molecules. Therefore more energy is required to overcome the IMF in 2-methylpropan-2-ol than in pentane.
And the more energy required the higher the boiling point.
3.5 2-methylpropan-2-ol \checkmark
$3.6 \mathrm{n}=\frac{m}{M}$
$\mathrm{M}\left[\mathrm{CO}_{2}\right]=12+2(16)=44$
(a) $\quad \mathrm{CO}_{2}: \quad \mathrm{n}=\frac{34}{44}=0,773 \mathrm{~mol} \checkmark$
(b) $0,773 \mathrm{~mol} \mathrm{CO}_{2}$ is created by $\frac{0,77}{4}=0,193 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10}$ V
(c) Mass $\mathrm{C}_{4}, \mathrm{H}_{10}: m=\mathrm{n} \times \mathrm{M}$

$$
\begin{aligned}
& =0,193 \times[4(12)+10(1)] \\
& =11,19 \mathrm{~g} \checkmark
\end{aligned}
$$

(d) Percentage purity $=\frac{11,2}{26} \times 100 \checkmark=43,05 \% \checkmark \quad$ [Accept: $--43,09 \%$]

QUESTION 4

4.1 Cracking \checkmark of alkanes
4.2.1 Addition polymerization \checkmark
4.2.2 polyethene/ polythene/ polyethelene \checkmark (any one)
4.2.3

4.3

4.4 Hydration \checkmark
4.6 Excess of a conc. strong acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \checkmark$
Mild heat \checkmark
4.7.1 Substitution \checkmark NOT: Halogenation/Bromination
4.7.2 Add NaBr in presence of dilute $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$ Mild heat \checkmark

	\checkmark
Add	\checkmark
	HBr
and mild heat	

4.7.3 Sodium hydroxide \checkmark

QUESTION 5

5.1

Amount of mole Zn available at $0 \mathrm{~s}: n=\frac{m}{M}$		
Amount of mole Zn available at 12 s	$\begin{aligned} & \frac{m}{M} \\ & 0,009 \\ & 65 \\ & , 00014 \mathrm{~mol} \end{aligned}$	\downarrow
$\begin{aligned} \text { Ave Rate } & =-\frac{\Delta c}{\Delta t}(\text { no mark for formula }) \\ & =\frac{0,00014-0,00025}{} \end{aligned}$		
$\text { Ave Rate }=9,167 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~s}^{-1}$		$\left.5 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~s}^{-1}\right)$

$$
\begin{aligned}
\Delta \mathrm{n} & =\Delta \mathrm{m} / \mathrm{MM} \\
& =(0,009-0,016) / 65 \\
& =-1,077 \times 10^{-4} \mathrm{~mol}
\end{aligned}
$$

\therefore Average Rate $=-\Delta n / \Delta t$

$$
\begin{align*}
& =-\left[-1,077 \times 10^{-4} /(12-0)\right] \\
& =8,974 \times 10^{-6} \mathrm{~mol} \cdot \mathrm{~s}^{-1} . \tag{4}
\end{align*}
$$

5.2 The HCl is used up/depleted / HCl is the limiting reactant \checkmark
5.3 The rate decreases as time passes. \checkmark
5.4.1
5.4.2

(4)

5.6 An increase in temperature increases the number of particles having minimum kinetic energy.
Therefore there are more collisions per second/ unit time/ frequency of collision increases
More effective collisions per second/ unit time / frequency of effective collision increases
Which increases rate of reaction

QUESTION 6

6.1 It is a dynamic equilibrium when the rate of the forward reaction equals the rate of the reverse reaction $\checkmark \checkmark$ and the reactions occur simultaneously.
6.2

	N_{2}		$3 \mathrm{H}_{2}$
Initial moles	$33,6 / 28=1,2 \quad \mathrm{NH}_{3}$		
Change in moles	$-\quad 1$	$-24 / 2=12 \checkmark$	0
Equilibrium moles	$5,6 / 28=0,2 \quad$	9	+2
Equilibrium conc $(=\mathrm{n} / \mathrm{V})$	$0,2 / 5=0,04$	$9 / 5=1,8$	2

$\therefore\left[\mathrm{N}_{2}\right]=0,04 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \checkmark \quad$ AND $\quad\left[\mathrm{H}_{2}\right]=1,8 \mathrm{~mol} \cdot \mathrm{dm}^{-3} \checkmark$

6.4 Increases $\sqrt{ }$
6.5 Exothermic $\sqrt{ }$
6.6 When the temperature increases, the K_{c} value decreases, which means the concentration of the reactants increased and the concentration of the products decreased. \checkmark Therefore the reverse reaction was favoured. \checkmark An increase of temperature favours the endothermic reaction, \checkmark therefore the forward reaction must be exothermic.

QUESTION 7

7.1 It dissociates completely in water \checkmark to produce a high concentration of OH^{-}ions.
7.2 (a) $\mathrm{n}=\frac{m}{M}$

$$
\begin{aligned}
& =\frac{27}{137+2(16+1)} \\
& =0,158 \mathrm{~mol}
\end{aligned}
$$

(b) $\mathrm{Ba}(\mathrm{OH})_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq})$

Therefore $0,158 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$ produces $2 \times 0,158=0,316 \mathrm{~mol} \mathrm{OH}^{-} \checkmark$
(c) Concentration of hydroxide ions:

$$
\begin{aligned}
c & =\frac{n}{V} \\
& =0,316 / 2 \\
& =0,158 \mathrm{~mol} \cdot \mathrm{dm}^{-3}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right] \checkmark \\
& 10^{-14}=[0,158]\left[\mathrm{H}^{+}\right] \checkmark \\
& {\left[\mathrm{H}^{+}\right]=6,329 \times 10^{-14} \mathrm{~mol} \cdot \mathrm{dm}^{-3}} \\
& \text { (e) } \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \quad \checkmark \\
& =-\log \left[6,329 \times 10^{-14}\right] \checkmark \\
& =13,19 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR: } \\
& \begin{aligned}
\text { Calc: } \mathrm{pOH} & =-\log [\mathrm{OH}] \\
& =-\log (0,158) \\
& =0,801 \quad \checkmark \\
\therefore \mathrm{pH}= & 14
\end{aligned} \\
& \begin{aligned}
& -0,801 \quad \checkmark \\
= & 13,20 \checkmark
\end{aligned}
\end{aligned}
$$

7.3 Burette $\sqrt{ }$

7.4 An acid is a proton (H^{+}-ion) donor. $\checkmark \checkmark$ (2 or 0)
$7.5 \mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \longrightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{ll}
\mathrm{n}_{\mathrm{b}}=1 & \mathrm{n}_{\mathrm{a}}=2 \\
\mathrm{c}_{\mathrm{b}}=0,079 & \mathrm{c}_{\mathrm{a}}=2,5 \\
\mathrm{~V}_{\mathrm{b}}=2 \mathrm{dm}^{3} & \mathrm{~V}_{\mathrm{a}}=?
\end{array}
$$

$0,158 \mathrm{~mol} \mathrm{Ba}(\mathrm{OH})_{2}$ will be neutralized by $0,316 \mathrm{~mol} \mathrm{HCl}$,
$\mathrm{C}=\frac{n}{v} \mathrm{~V}$
$2,5=\frac{0,316}{V} V$
$V=0,126 \mathrm{dm}^{-3}$ or $0,13 \mathrm{dm}^{-3} \checkmark$.

$$
\begin{gather*}
\text { CaVa }^{\text {CbVb }} \\
\checkmark \\
\checkmark \text { na/nb } \tag{4}\\
(2,5) \mathrm{Vb} /(0,079)(2)=2 / 1 \quad \checkmark \\
V_{\mathrm{b}}=0,126 \mathrm{dm}^{3}
\end{gather*}
$$

7.6 bromothymol blue changes colours when the pH is around $7 . \checkmark$ This is also the end point for a reaction between a strong acid and a strong base $/ \checkmark$ Phenolphthalein is an effective indicator for a reaction between a strong base and a weak acid.

7.7 REMAINS YELLOW \checkmark

QUESTION 8

8.1 Al $\sqrt{ }$
8.2.1 $A l \rightarrow A l^{3+}+3 e^{-} \checkmark \checkmark$
8.2.2 Co^{3+} V
8.3 Decreases \checkmark

- Phase must be indicated.
- $1 \mathrm{~mol} \cdot \mathrm{dm}^{-3}$ not necessary
accept $\mathrm{Al}(\mathrm{s})\left|\underset{\left(1 \mathrm{~mol}^{2} \cdot \mathrm{dm}^{3}\right)}{\mathrm{Al}^{3+}} \| \underset{\left(1 \mathrm{~mol}^{2} \cdot \mathrm{dm}^{3}\right)}{\mathrm{Co}^{3+}}{ }_{(\mathrm{aq})}\right| \mathrm{Co}^{2+}(\mathrm{aq}), \mathrm{Pt}(\mathrm{s}) \checkmark$
8.5 $\quad E^{\ominus}=E_{\text {reduction }}-E_{\text {oxidation }} \checkmark$
$=1,81-(-0,76) \checkmark$
$=2,57 \vee \checkmark$

QUESTION 9

9.1 The chemical process in which electrical energy \checkmark is converted to chemical energy \checkmark

OR
The use of electrical energy \checkmark to produce a chemical change \checkmark.
9.2.1 Chlorine gas/ Cl_{2}
9.2.2 Hydrogen / $\mathrm{H}_{2} \checkmark$

9.3 $\quad \mathrm{H}_{2} \mathrm{O}$ has a stronger oxidizing ability than Na^{+}/
Na^{+}is a weaker oxidizing agent than $\mathrm{H}_{2} \mathrm{O}$
9.4 (a) Amount of mole Cl_{2} that formed:

$$
\begin{aligned}
\mathrm{n} & =\frac{V}{22,4}=\frac{2.24}{22,4} \\
& =0,1 \mathrm{~mol} \mathrm{Cl} \\
2 & \text { formed. }
\end{aligned}
$$

(b) $0,1 \mathrm{~mol} \mathrm{Cl}_{2}$ is formed from $0,2 \mathrm{~mol} \mathrm{NaCl} \checkmark$

Initial amount of NaCl available

$$
\mathrm{n}=\mathrm{cV}=2,5 \times 0,5 \checkmark=1,25 \mathrm{~mol} \checkmark
$$

(c) Amount NaCl left in solution after electrolysis: 1,25-0,2=1,05 mol \checkmark

QUESTION 10

10.1
10.1.1 Oxygen / $\mathrm{O}_{2} \checkmark$
10.1.2 Haber process \checkmark
10.1.3 $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark$
10.1.4 The temperature at which the reaction takes place is approx. $450^{\circ} \mathrm{C}$ and water is a vapour. \checkmark Also the $\mathrm{H}_{2} \mathrm{SO}_{4}$ that will be formed is a vapour/mist and cannot be collected easily. \checkmark
10.2.1 Nitrogen \checkmark and phosphorous \checkmark
10.2.2 Mass of nutrient $={ }^{35} / 100 \times 40=14 \mathrm{~g}$
50% of the fertilizer consist of phosphorous:
Mass of phosphorus $=0,5 \times 14=7 \mathrm{~g} \checkmark$
$\mathrm{n}=\frac{\mathrm{m}}{\mathrm{M}}$
$={ }^{7} / 31 \mathrm{~V}$
$=0,226 \mathrm{~mol} \checkmark$

