

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

DEPARTMENT OF EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: PHYSICS (P1) AND CHEMISTRY (P2)

22 AUGUST 2022

MEMORANDUM

MARKS: 100

These marking guidelines consist of 10 pages.

Copyright reserved please turn over

QUESTION 1

1.1
$$\mathsf{D}\checkmark\checkmark$$
 (2)

$$1.2 \quad \mathsf{A}\checkmark\checkmark \tag{2}$$

1.3
$$B\sqrt{}$$
 (2)

$$1.4 \quad \mathsf{D}\checkmark\checkmark \tag{2}$$

QUESTION 2

2.2.2 Decrease√

- One mark the first bullet OR
- One mark for the second bullet

• The potential energy for the products is higher than that of the reactants/. The potential energy for the reactants is lower than that of products. ✓

This shows that the reaction is endothermic/heat absorbing. ✓

2.2.3
$$\Delta H = E_{P}(P) - E_{P}(R)$$
= 170 - 50 \checkmark
= 120 KJ \checkmark (2)

2.2.4
$$E_a = E_P(Ca) - E_P(R)$$

= 200 - 50
= 150 KJ \checkmark (1)

[8]

(2)

(1) **[11]**

QUESTION 3

3.1 The change in concentration of products or reactants per unit time. ✓✓ **OR:**

The change in number of moles/ mass/ volume of reactants/products per unit time. $\checkmark\checkmark$ (2)

- 3.2 To ensure that all the magnesium gets used up. \checkmark (1)
- 3.3 To make it a fair comparison/test. ✓ (1)
- 3.4

$$n_{i}(Mg) = \frac{m}{M}$$

$$= \frac{2.4}{24}$$

$$= 0.10 \text{ mol}$$

$$\therefore P = 0.10 \checkmark$$
(3)

3.5 Positive marking from 3.4 $n(Mg)_{used} = n_i - n_f$

= 0,10
$$\stackrel{\checkmark}{=}$$
 0,08
= 0,02 mol
m(Mg)used= nM
= (0,02)(24) $\stackrel{\checkmark}{=}$ = 0,48 g $\stackrel{\checkmark}{=}$

Option 2:
$$m(Mg) = n.M$$

= $(0,1)(24)$
= $2,4 g$ (it is given in the preamble)
 $m(Mg) = (0,08).(24) \checkmark$
= $1,92 g$
 $m(Mg)_{used} = 2,4 \checkmark -1,92$
= $0,48 g \checkmark \checkmark$ (3)

3.6 Positive marking from 3.4 & 3.5

4 Mogodumo Circuit/22 August 2022 Marking Guidelines

Average rate =
$$\frac{m(Mg)_{used}}{Time taken}$$
=
$$\frac{0.48}{160} \checkmark$$
=
$$3 \times 10^{-3} \text{ g·s}^{-1} \checkmark$$
(2)

3.7

- Steeper gradient√
- X intercept for S smaller than for graph R√

3.8 Higher concentration for curve **S** means:

- More reactant particles will be present in a given volume /
 More particles will have the correct orientation.
- More effective collisions per unit time/Higher frequency of effective collisions. ✓
- Increased reaction rate. ✓

OR: Lower concentration for graph **R** means:

- Less reactant particles will be present in a given volume /
 Less particles will have the correct orientation. ✓
- Less effective collisions per unit time/ Lower frequency of effective collisions. ✓

(2)

Decreased reaction rate. ✓

(3)

[17]

QUESTION 4

4.1.1 ANY ONE:

- Reversible reaction√
- Accept isolated system√

4.1.5 **R**✓

 The reverse reaction is endothermic and so the temperature is greatest where [AB₃ (g)] is lowest. √

4.1.7 **Q**√

• An increase in pressure will the favour the forward reaction, resulting in the [AB₂] increasing.

Therefore, high pressure corresponds to a high [AB₃]. \checkmark (2)

4.2

Equation	Br ₂ (g)	\Rightarrow 2Br(g)
Ratio	1	2
Initial amount (mol)	0,086	0
Change in amount (mol)	-4,128x10 ⁻³	+8,256x10 ³ √
Equilibrium amount (mol)	0,081872	8,256x10 ⁻³ √
$C = \frac{n}{v} \text{ (mol·dm}^{-3}\text{)}$	0,06498	6,5524x10 ⁻³ √

kc =

$$n(Br2)decomposed = \frac{4,8}{100}(0,086)$$

= 4,128x10⁻³ mol

Mogodumo Circuit/22 August 2022 Marking Guidelines

$$kc = \frac{[Br]^2}{[Br_2]} \checkmark$$

$$= \frac{(6,5524 \times 10^{-3})^2}{(0,06498)} \checkmark$$

$$= 6.61 \times 10^{-4} \checkmark$$
(6)

[15]

QUESTION 5

5.1.1
$$HCl(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + Cl^-(aq) \checkmark \checkmark$$
 Accept single arrow (2)

5.2 **OPTION 1:**

pH = -log[H₃O⁺] $3.5 \checkmark = -\log[H_3O^+]$ $-3,5 = \log[H_3O^+]$ $[H_3O^+]=10^{-3.5}$ $[H_3O^+]=3,1622 \times 10^{-4} \text{ mol} \cdot \text{dm}^{-3}$

 $K_W = [H_3O^+][OH^-]$ $1 \times 10^{-14} = (3,16228 \times 10^{-4}) [OH^{-}] \checkmark$ $[OH^{-}]=3,16228 \times 10^{-11} \text{ mol} \cdot \text{dm}^{-3}$

OPTION 2:

pH + pOH = 14√ pOH= 14 - pH = 14 - 3.5 = 10.5 $pOH = -log[OH^{-}]$ $10.5 \ \checkmark = -\log[OH^{-}]$ $[OH^{-}] = 10^{-10.5}$ $[OH^{-}] = 3,16228 \times 10^{-11} \text{ / mol·dm}^{-3}$

(3)

(3)

- 5.3.1 Basic√
 - (COO⁻)₂(aq) + 2H₂O(I) \rightleftharpoons (COOH)₂(aq) + 2OH⁻(aq) ✓
 - Excess OH⁻ ions are formed√
 - •Therefore the solution is basic
 - •Hence the pH > 7

$$5.3.2 c = \frac{m}{MV} \checkmark$$

5.3.2 $c = \frac{m}{MV} \checkmark$ $= \frac{3.8}{(90)(0.25)\checkmark}$ $= 0,169 \text{ mol·dm}^{-3} \checkmark$ = 0,0422222 mol = 0,169 mol·d $\therefore c = \frac{n}{V} \checkmark$ $= \frac{0.0422222}{0.25\checkmark}$ = 0,169 mol·d

 $= 0.169 \text{ mol} \cdot \text{dm}^{-3} \checkmark$ (3)

5.3.3 **OPTION 1**:

$$\begin{aligned} P_{a}c_{a}V_{a} &= P_{b}c_{b}V_{b} \\ OR \frac{c_{b}V_{b}}{c_{a}V_{a}} &= \frac{n_{b}}{n_{a}} \\ (2)(0,169)(30) &= (1)c_{b}(25) \checkmark \\ C_{b} &= 0,4056 \text{ mol·dm}^{-3} \end{aligned}$$

m(NaOH) = nM
$$\checkmark$$

=(0,1014)(40) \checkmark
= 4,056 g

m(impurities) =
$$5.0 \stackrel{\checkmark}{-} 4,056$$

= 0.944 g

OPTION 2:

1 mol (COOH)₂ reacts with 2 mol NaOH $n_a = cV = (0,169)(0,03) \checkmark$ = 5,07x10⁻³ mol

 $P_b n_b = P_a n_a$

 $(1)n_b = (2)(5,07x10^{-3})$

 $n_b = 0.01014 \text{ mol in } 25 \text{ cm}^3$

 $\therefore n_b = (10)(0,01014) \checkmark$

 $= 0.1014 \text{ mol in } 250 \text{ cm}^3$

∴m(NaOH) = Nm ✓

 $= (0,1014)(40) \checkmark = 4,056 g$

::m(impurities) = 5.0 - 4.056 = 0.944 g

(6)

[18]

QUESTION 6

bil A process that comots electrical energy to Charmad energy

6.2. Fleetward to Chemical / O

b31 Cr (og) + 3e -> Cr 6, 0

632 Chromaum / Cr V 0

63.3 Cr + / Chromam (TI) Don O

6.4 hate of axidation is equal to hate of reduction @

65 To approve the properties / Add value V

LIOT

	QUESTION 7
7.1	Reduction VO
7.2	A substance that gains electrons @
7.3.	Solver notrale V 0
74	$E_{\text{cuy}} = E_{\text{cuthol}} - E_{\text{anode}}$ $2,46 = (40,80) - E_{\text{anode}}$ $E_{\text{anode}} = -1,66 \text{ V}$
	Die Al/Aluminaumi 3
7.5	Alis, / Alies, (1 mol. dm) / Mg + (2) (1 mol. dm) / Ag /5 3 [12]

QUESTION 8

- 8.1.1 The direction of the car with the siren relative to the observer/listener. ✓ (1)
- 8.1.2 The observed/detected frequency of the siren. ✓ (1)
- 8.1.3 ANY ONE:
 - The actual frequency of the siren.√ (1)
 - The velocity of the car.√
- 8.2 The Doppler Effect.√
 - The apparent change in frequency (or pitch/wavelength) of the sound detected by the listener because the sound source and the listener have different velocities relative to the medium of sound propagation. ✓√
- 8.3 $f_{L} = \left(\frac{v \pm v_{L}}{v \pm v_{s}}\right) f_{s} \checkmark$ $409 = \left(\frac{v + 0}{v v_{s}}\right) (400) \checkmark$ (409)(v 7, 5) = (v)(400) $V = 340,83 \text{ m·s}^{-1} \checkmark$ (3)
- 8.4 ANY ONE:
 - To monitor blood flow.✓ (1)
 - To detect the heartbeat of a foetus.√

[10]

(3)

QUESTION 9

9.1.1 A force for which the work done (in moving an object between two points) is independent of the path taken. ✓✓

OR: A force for which the work done on a particle moving through any closed path is zero.

(2)

9.1.2

f:	Frictional force/friction√
N:	Normal force√
Fg/w:	Gravitational force/weight√

(3)

9.1.3 The net/ total work done on an object is equal to the change in the object's kinetic energy.

OR: The work done on an object by the net force is equal to the change in the object's kinetic energy.

(2)

9.1.4
$$W_{net} = \Delta E_k$$

$$W_N + W_{f_k} + W_w = \Delta E_k$$

0 + f_k·Δx·cosβ+ mg·Δx·cosα =
$$\frac{1}{2}$$
m(v_f²-v_i²)

$$\mu_k \cdot N \cdot \Delta x \cdot cos\beta + mg \cdot \Delta x \cdot cos\alpha = \frac{1}{2} m \big(v_f^2 - v_i^2 \big)$$

$$\mu_k \cdot mgcos\theta \cdot \Delta x \cdot cos\beta + mg \cdot \Delta x \cdot cos\alpha = \frac{1}{2} m \left(v_f^2 - v_i^2 \right)$$

 $(0,16)(10)(9,8)(\cos 35^{\circ})(5)(\cos 180^{\circ})+(10)(9,8)(5)(\cos 55^{\circ}/305^{\circ})=\frac{1}{2}(10)\left(v_{f}^{2}-0^{2}\right)$

$$-64,22152027 + 281,0524538 = 5v_f^2$$

$$216,8309335 = 5v_f^2$$

$$v_f^2 = 43,36618671$$

$$v_f = 6,5853 \text{ m} \cdot \text{s}^{-1} \checkmark$$

(5)

• W_w can also be calculated by using 1) $W_w = Fg_{\parallel} \times \Delta x \times cos\theta$

Copyright reserved

-Any one√

11 Mogodumo Circuit/22 August 2022 Marking Guidelines

2)
$$W_w = -\Delta E_p = -mg(h_f - h_i)$$

9.1.5
$$(E_P + E_K)_B = (E_P + E_K)_C$$

$$(mgh + \frac{1}{2}mv^2)_B = (mgh + \frac{1}{2}mv^2)_C$$

$$(10)(9,8)h + \frac{1}{2}(10)(6,5853)^2 \checkmark = (10)(9,8)(0) + \frac{1}{2}(10)(8,5)^2$$

$$(98)h + 216,8308805 = 0 + 361,25 \checkmark$$

$$(98)h = 144,4191195$$

$$\therefore h = 1,4737 \text{ m} \checkmark$$

$$\therefore \text{The height is } 1,4737 \text{ m}$$

9.2.1 The rate at which work is done. ✓ ✓

OR: The rate at which energy is expended/transferred.✓✓

9.2.2 W = E_P
= mgh
=
$$(4500)(9,8)(100) \checkmark$$

= $4410000 J$

$$P = \frac{W}{\Delta t}$$

$$2300 = \frac{4410000}{\Delta t}$$

$$\Delta t = \frac{4410000}{2300}$$

$$= 1917,39 \text{ s}$$
(3)

Copyright reserved please turn over

[21]

(4)

(2)

GRAND TOTAL: 150 MARKS