

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES P2 (CHEMISTRY)

MARKING GUIDELINE

PREPARATORY EXAMINATION

SEPTEMBER 2022

MARKS: 150

This marking guideline consists of 13 pages.

(3)

QUESTION 1

1.1
$$C \checkmark \checkmark$$
 (2)

1.2 B
$$\checkmark\checkmark$$
 (2)

1.3
$$\mathsf{D}\checkmark\checkmark$$
 (2)

$$1.4 \qquad A \checkmark \checkmark \tag{2}$$

1.6
$$\mathsf{D} \checkmark \checkmark$$
 (2)

1.7
$$\mathsf{D}\checkmark\checkmark$$
 (2)

1.8 A
$$\checkmark\checkmark$$
 (accept C) (2)

1.9
$$C \checkmark \checkmark$$
 (2)

QUESTION 2

2.1
$$C_nH_{2n-2} \checkmark$$
 (1)

2.1.2

Marking criteria:

- functional group√
- All the substituents(2 methyl groups and 1 ethyl group) correct √
- Whole structure correct √ 3/2

2.2

Organic compounds having the same molecular formula , but different 2.2.1 functional groups√ (underlined words must be in correct contexts)

(2)

2.2.2 Pentanal/2-methylbutanal/3-methylbutanal/2,2-dimethylpropanal ✓✓ (2)(functional group -anal √ Everything correct ✓)

(If wrong functional group 0/2)

2.3

2.3.1 hydroxyl√ (1)

2.3.2

Marking criteria:

- Only functional group correct: Max: $\frac{1}{2}$
- Whole structure correct: $\frac{2}{2}$

(2)

2.4

2.4.1 esterification ✓ (1)

2.4.2 butyl√ propanoate√

(2)[14]

Copyright Reserved

3.1	The temperature at which the vapour pressure equals atmospheric (external) pressure. $\checkmark\checkmark$ (2 or 0)	(2)
3.2	YES. ✓ P, Q and R are straight chain primary alcohols/only ONE independent variable. ✓	(2)
3.3	Boiling point increases \checkmark with increase in chain length/molecular mass. \checkmark	(2)
3.4	 Intermolecular forces/Van der Waals forces/London forces/dispersion forces increase (becomes stronger) with increase in chain length√ More energy needed to overcome/break intermolecular forces as chain length increases. √ 	(2)
3.5	REMAINS UNCHANGED√	(1)
3.6	P√ Any One P has the lowest boiling point ✓ OR P has the weakest intermolecular forces✓	(2)
3.7	 LESS THAN√ Intermolecular forces between molecules of alcohols are hydrogen bonding (in addition to London forces/dispersion forces). √ Intermolecular forces between molecules of C₆H₁₄ are only London forces/dispersion forces. √ London forces/dispersion forces are weaker than hydrogen bonding / Intermolecular forces in C₆H₁₄ are weaker/ Intermolecular forces in Q are stronger. √ Less energy needed to overcome/break intermolecular forces in C₆H₁₄/ more energy needed to overcome Intermolecular forces in Q.√ 	(5) [16]

4.5

(3)

4.7
$$C_3H_8 + 5O_2 \longrightarrow 3CO_2 + 4H_2O$$

reactants \checkmark products \checkmark balancing \checkmark (3)

Copyright Reserved

5.1 Change in concentration \checkmark of reactants/products per unit time. \checkmark Change in amount/number of moles/volume/mass \checkmark of reactants or products per unit time. \checkmark

Amount/number of moles/volume/mass√ of products formed or reactants used per unit time. ✓

(2)

5.2

average rate =
$$\frac{\Delta V}{\Delta t}$$

= $\frac{(104 - 64)}{(60 - 30)} \checkmark$
= 1,33 \checkmark (cm³.s⁻¹) (3)

5.3 **I**√

The gradient / m / slope of graph I is less steep than II. \checkmark or Took a longer time for rection to reach completion. \checkmark

(2)

5.4 Catalyst√

(1)

- A catalyst provides an alternate pathway of lower activation energy. ✓
 - More particles will have sufficient energy for an effective collision/ more molecules have kinetic energy equal to or greater than the activation energy.√
 - Number of effective collisions per unit time increases/frequency of effective collisions increases.√

(3)

5.6 **Marking criteria:**

- Ratio: n(Mg) initial equals n(H₂) final produced in reaction II. ✓
- Formula: $n = \frac{V}{V_m} \checkmark$
- Correct substitution ($\frac{0,12}{24,04}$) in the above formula \checkmark
- To calculate n(Mg) used(reacted) in reaction I in 150 s√
- n(Mg)initial n(Mg)used/reacted ✓
- Formula: m = nM√
- Correct substitution of 24 with n Mg in the above formula. ✓
- Final answer = 0,018 g. ✓

OPTION 1

n(Mg)initial = n(H₂)produced in EXP II =
$$\frac{V}{V_m}$$
 = $\frac{0,12}{24,04}$ \(= 4,99 \times 10^{-3} \text{ mol} \)

n(Mg)used in EXP I = n(H₂)produced in EXP II = $\frac{V}{V_m}$ = $\frac{0,102}{24,04}$ \(= 4,24 \times 10^{-3} \text{ mol} \)

n(Mg) remaining = 4,99 \times 10^{-3} - 4,24 \times 10^{-3} \(= 0,75 \times 10^{-3} \text{ mols} \)

m(Mg) = nM \(= 0,018 \text{ g/} \)

OPTION 2

nH₂ still to be produced = nMg
$$\checkmark$$

$$n = \frac{V}{V_{m}} \checkmark$$

$$= \frac{0.12 - 0.102}{24.04} \quad (1 \text{ mark for subtraction})$$

$$= 7.49 \times 10^{-4} \text{ mol}$$

$$m = n \times M \checkmark$$

$$= \frac{7.49 \times 10^{-4} \times 24}{20.018g} \checkmark$$
(8)

[19]

6.1 The rate of forward reaction equals the rate of reverse reaction.

Notes

IF: Forward reaction equals reverse reaction.

$$\frac{1}{2}$$
 (2)

(1)

6.2 Reactants and products are ALL in the same phase. ✓

6.3 Marking criteria:

- n(Cl₂) equilibrium = 0,4√
- Using the correct mol ratio√
- Calculating the quantity(mol) at equilibrium of all three substances √
- Divide number of moles at equilibrium by 5 dm³√
- K_c expression√
- Correct substitution of equilibrium concentrations into K_c expression √
- Substitute n(O₂) initial and M(O₂) into m = nM√
- Final answer 9,60 g ✓

OPTION 1

	HCł	O ₂	H ₂ O	Cl ₂	
Ratio	4	1	2	2	
Initial quantity (mol)	1	Х	0	0	Using ratio ✓
Change (mol)	0,8	0,2	0,4	0,4	
Quantity at equilibrium (mol)	1 - 0,8	x - 0,2	0 + 0,4	0,4√	
Equilibrium concentration (mol·dm ⁻³)	0,04	x - 0,2 5	0,08	0,08	Divide by 5 ✓

$$K_{c} = \frac{[H_{2}O]^{2}[C\ell_{2}]^{2}}{[HC\ell]^{4}[O_{2}]} \checkmark$$

$$\therefore 800 = \frac{(0,08)^{2}(0,08)^{2}}{(0,04)^{4}\left(\frac{x-0,2}{5}\right)} \checkmark$$

$$x = 0,3 \text{ mols}$$
No K_c expression, correct substitution. $\frac{7}{8}$
Wrong K_c expression $\frac{6}{8}$

$$n(O_2) = nM$$

= $(0.3) (32) \checkmark$
= $9.60 g \checkmark (range 9.595312 to 9.60) (8)$

OPTION 2

	HCł	O ₂	H ₂ O	Cl ₂	
Ratio	4	1	2	2	
Initial quantity (mol)	1	0,3	0	0	
Change (mol)	0,8	0,2	0,4	0,4	Using ratio ✓
Quantity at equilibrium (mol)	1 - 0,8	0,1	0+0,4	0,4√	
Equilibrium concentration (mol·dm ⁻³)	0,04	[O ₂]	0,08	0,08	Divide by 5 ✓

$$K_{c} = \frac{[H_{2}O]^{2}[C\ell_{2}]^{2}}{[HC\ell]^{4}[O_{2}]} \checkmark$$

$$\therefore 800 = \frac{(0,08)^{2}(0,08)^{2}}{(0,04)^{4}[O_{2}]} \checkmark$$

$$[O_{2}] = 0,02 \text{ mol·dm}^{-3}$$

No K_c expression, correct substitution. $\frac{7}{8}$

Wrong K_c expression $\frac{6}{8}$

$$n(O_2) = nM$$

= $(0,3)(32)$ \(= 9,60 g\(\) (range 9,595312 to 9,60)

6.4 When the equilibrium in a closed system is disturbed, the system will re-instate a new equilibrium by favouring the reaction that will oppose the disturbance. ✓✓

Note: Underlined phrases must be in correct context

(2)

6.5.1 Remains the same. ✓ (1)

6.5.2 Increases. ✓ (1)

6.6 An increase in pressure favours the reaction that produces a fewer number of moles. ✓

The forward reaction is favoured. ✓

(2)

6.7.1 Negative (1)

6.7.2 Option 1

- When the temperature increases the reverse reaction is favoured. \checkmark
- An increase in temperature favours the endothermic reaction. ✓
- Forward reaction is exothermic. ✓

Option 2

- Kc decreases with an increase in temperature. ✓
- Reverse reaction is favoured/concentration of reactants increases/concentration of products decreases/yield decreases. ✓
- Increase in temperature favours the endothermic reaction. ✓

[21]

Copyright Reserved Please Turn Over

(3)

- 7.1.1 A substance that acts as an acid and as a base. $\checkmark\checkmark$ (2)
- 7.1.2 $HSO_4^-/hydrogen sulphate ion\sqrt{ }$ (1)

7.2.1 Marking guidelines:

- Formula: pH = log [H₃O⁺] ✓
- Substitution: 0,1√
- Final answer: 1√

pH =
$$-\log [H_3O^+] \checkmark$$

= $-\log 0,1\checkmark$
= $1\checkmark$

7.2.2 EQUAL TO 7 ✓ (1)

7.2.3 **OPTION 1/OPSIE 1**

$$n(OH^{-}) = n(H^{+}) \checkmark$$

= $cV \checkmark$
= $(0,1)(0,03) \checkmark$
= 0,003 mol \checkmark

Marking guidelines:

- Mol ratio: n(OH⁺) = n(H⁺)
- n = cV (entire eq)
- Substitution of 0,1
- Substitution of 0,03.
- Final answer: 0,003 mol.

OPTION 2

$$\frac{c_a \times V_a}{c_b \times V_b} = \frac{n_a}{n_b}$$

$$\frac{0.1 \times 30}{cb \times 20} = \frac{1}{1}$$

$$cb = 0.15 \text{ mol} \cdot dm^{-3}$$

$$n = cV$$

$$= (0.15)(0.02)$$

$$= 0.003 \text{ mols}$$

Marking guidelines:

- Mol ratio
- Formula: n = cV
- Substitution of (0,15)(0,02)
- Final answer: 0,03 mol

(4)

(3)

Copyright Reserved

7.2.4 Marking criteria:

- Calculate number of moles of hydroxide ions in 250 cm³.√
- Calculate number of moles of hydroxide ions in Ba(OH)₂. ✓
- Calculate number of moles NaOH = 0,02 √
- Mol ratio: number of moles of Ba(OH)₂: number of moles of OH⁻.√
- Formulae: n = cV √
- Substitute in the above formula. ✓
- Final answer: 0.175 mol.dm⁻³. √

OPTION 1

$$n(OH^{-}) in 250 cm^{3} = \frac{(0,003)(250)}{20} \checkmark$$

$$= 0,0375 mols$$

$$n(OH^{-}) in Ba(OH)_{2} = n(OH^{-})_{TOTAL} - n(OH^{-})NaOH$$

$$= 0,0375 \stackrel{?}{\checkmark} 0,002 \checkmark$$

$$= 0,0175 mols$$

$$n(Ba(OH)_{2}) = \frac{1}{2} n(OH^{-})$$

$$= \frac{1}{2} (0,0175) \checkmark$$

$$= 0,00875 mols$$

$$c (Ba(OH)_{2}) = \frac{n}{V} \checkmark$$

$$c (Ba(OH)_{2}) = \frac{0,00875}{0,05} \checkmark$$

$$= 0,175 mol.dm^{-3}. \checkmark$$

OPTION 2

V(NaOH) in 20 cm³ =
$$\frac{4}{5}$$
 x 20
= 16 cm³
VBa(OH)₂ in 20 cm³ = 20 - 16
= 4 cm³
 $n(OH^{-})$ from NaOH = cV
= $(0,1)(16 \times 10^{-3})$
= $1,6 \times 10^{-3}$ mols \checkmark
 $n(OH^{-})$ from Ba(OH)₂ = $\frac{3 \times 10^{-3} \checkmark 1,6 \times 10^{-3}}{1,4 \times 10^{-3}}$ mols
 $n(Ba(OH)_2)$ = $\frac{1}{2}$ $n(OH^{-})$
= $\frac{1}{2}$ $(1,4 \times 10^{-3})$ \checkmark
= $0,7 \times 10^{-3}$ mols
 $c(Ba(OH)_2)$ = $\frac{n}{V}$
 $c(Ba(OH)_2)$ = $\frac{0,0007}{0,004}$ \checkmark
= $0,175$ mol.dm⁻³. \checkmark

(/) [**18]**

- 8.1 Voltaic/galvanic cell. ✓ (1)
- 8.2 Temperature: 25 °C/298 K. ✓
 Concentration of electrolytes: 1 mol.dm⁻³. ✓
 (2)
- 8.3 spontaneous. ✓ No external energy is required ✓ Accept: cell potential is positive / cell is a galvanic cell. ✓ (2)
- 8.4.1 Pt(s)/ Fe²⁺(aq)(1 mol.dm⁻³), Fe³⁺(aq)(1 mol.dm⁻³) // X⁺(aq)(1 mol.dm⁻³)/X(s) (3) Accept: Pt/Fe²⁺, Fe³⁺//X⁺/X (MINUS 1 MARK FOR ANY ERROR)
- 8.4.2 $X^+(aq) + e^- \rightarrow X(s) \checkmark \checkmark$ Ignore phases

Notes

•
$$X \leftarrow X^{+} + e^{-}$$
 $\binom{2}{2}$ $X^{+} + e^{-} \rightleftharpoons X$ $\binom{1}{2}$ $X \rightleftharpoons X^{+} + e^{-} \leftarrow X$ $\binom{0}{2}$

Ignore if charge on electron omitted.
 If a charge of an ion is omitted eg. X + e⁻ → X Max: (½)

(2)

8.5
$$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} \checkmark$$

$$0,03\checkmark = E_{reduction}^{\theta} - (0,77) \checkmark$$

$$E_{reduction}^{\theta} = 0,80V$$

$$X \text{ is Ag}\checkmark$$
Notes

• Accept any other correct formula from the data sheet.
• Any other formula using unconventional abbreviations, e.g. $E_{cell}^{\circ} = E_{OA}^{\circ} - E_{RA}^{\circ}$ followed by correct substitutions Max: $\frac{3}{4}$

[14]

9.1 A substance that forms free (positive and negative) ions when melted or dissolved. ✓✓

OR

A <u>solution that conducts electricity</u>. ✓✓

OR

A liquid/solution/dissolved substance that conducts electricity through the movement of ions. </

(2)

9.2 Electrode P ✓ (1)

 $Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \checkmark \checkmark$ 9.3 Ignore phases

Notes

• $Cu \leftarrow Cu^{2+} + 2e^{-}$ $\binom{2}{2}$ $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $\binom{1}{2}$ $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $\binom{0}{2}$ $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $\binom{0}{2}$

- Ignore if charge on electron omitted.
- If a charge of an ion is omitted eg. Cu + 2 e⁻ \leftarrow Cu Max: $(\frac{1}{2})$

(2)

9.4 Increases. ✓

Reduction takes place at electrode P. ✓

(2)

9.5

Zinc ions(Zn^{2+}) \checkmark and Copper ions(Cu^{2+}) \checkmark 9.5.1

(2)

9.5.2 **OPTION 1**

Cu²⁺ ions is a stronger oxidising agent than Zn²⁺ ions√ Cu²⁺ will be reduced to Cu.√

OPTION 2 (2)

Zn²⁺ ions are a weaker oxidising agent than Cu²⁺ ions√ Zn²⁺ will therefore not be reduced to Zn. ✓

[11]

TOTAL: 150