

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

DEPARTMENT OF EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: PHYSICS (P1)
SEPTEMBER 2022
MARKING GUIDELINES

MARKS: 150

!**!!**

This marking guidelines consist of 15 pages.

Copyright reserved please turn over

1.1 B ✓✓ (2)

1.2 A ✓ ✓ (2)

1.3 C ✓✓ (2)

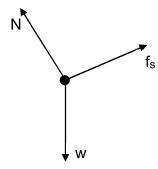
1.4 A $\checkmark\checkmark$ (2)

1.5 B ✓ ✓ (2)

1.6 D $\checkmark\checkmark$ (2)

1.7 D ✓ ✓ (2)

1.8 A $\checkmark\checkmark$ (2)


1.9 C ✓ ✓ (2)

1.10 A ✓ ✓ (2)

[20]

2.1.1 The force that opposes the tendency of motion of a stationary object relative to a surface. ✓ ✓

2.1.2

	Accept the following symbols:	
N✓	F _N /Normal force/F _{surface on crate}	
f₅✓	f/F _f /frictional force/static frictional force	
w√	Fg/mg/weight/gravitational force/FEarth on crate	

Take uphill as POSITIVE

Notes:

- Mark is awarded for label and arrow.
- Do not penalize for length of arrows
- Deduct 1 mark for any additional force.
- If force(s) do not make contact with dot/body: 2/3
- If arrows missing: 2/3

(3)

(2)

2.1.3

$$F_{\text{net}} = \text{ma}$$

$$\therefore f_s^{\text{max}} + (-\text{mgsin}\,\theta) = \text{ma}^{\text{max}}$$

$$\mu_s = F_N - \text{mgsin}\,\theta = \text{ma}^{\text{max}}$$

$$\mu_s = \text{mgcos}\,\theta - \text{mgsin}\,\theta = \text{ma}^{\text{max}}$$

$$\therefore f_s^{\text{max}} - \text{m}(9,8)(\sin 10^\circ) = \text{ma}^{\text{max}} \dots 1$$

$$\text{But } f_s^{\text{max}} = \mu_s \text{N}$$

$$\therefore f_s^{\text{max}} = \mu_s (\text{mgcos}\,\theta) \dots 2$$

$$\text{Subst. (2) into (1):}$$

$$\therefore \mu_s (\text{mgcos}\,\theta) - \text{m}(9,8)(\sin 10^\circ) = \text{m}(\text{a}^{\text{max}})$$

$$\therefore (0,35) \text{ m}(9,8)(\cos 10^\circ) \checkmark - \text{m}(9,8)(\sin 10^\circ) = \text{m}(\text{a}^{\text{max}})$$

$$(\div \text{m}) : \therefore (0,35)(9,8)(\cos 10^\circ) \checkmark - (9,8)(\sin 10^\circ) \checkmark = \text{a}^{\text{max}}$$

$$\therefore \text{the maximum acceleration is } 1,676 \text{ m} = \text{s}^{-2} \checkmark$$

(5)

2.2.1 Marking criteria

-1 mark for each key word/phrase omitted in the correct context.

Each body in the universe attracts every other body with a (gravitational) force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers. $\checkmark\checkmark$

OR:

Every particle in the universe attracts every other particle with a (gravitational) force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

(2)

$$g_{E} = \frac{GM_{E}}{R_{E}^{2}} = 9.8 \text{ m} \square \text{s}^{-2}$$

$$g_{M} = \frac{GM_{M}}{R_{M}^{2}} \checkmark$$

$$= \frac{G\left(\frac{M_{E}}{153}\right)^{2}}{\left(\frac{R_{E}}{5}\right)^{2}} \checkmark$$

$$= \frac{25}{153} \frac{GM_{E}}{R_{E}^{2}}$$

$$= \frac{25}{153} (9.8)$$

$$= 1.60 \text{ m} \square \text{s}^{-2} \checkmark$$
(downwards)

(3)

2.2.3 Equal to ✓

(1) **[16]**

3.1 Motion during which the only force acting on an object is the gravitational force. ✓ ✓ (2)

3.2

OPTION 1: UPWARDS POSITIVE:

For stone X:	For stone Y:	
$\Delta y = v_i \Delta t + \frac{1}{2} a (\Delta t)^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a (\Delta t)^2$	
$0 = (3v)(10) + \frac{1}{2}(-9.8)(10)^2 \checkmark$	$0 = \left(\frac{49}{3}\right) \Delta t + \frac{1}{2} (-9.8) (\Delta t)^2 \checkmark$	
0 = 30v - 490 490 = 30v	$0 = \Delta t \left(\frac{49}{3} - 4,9 \Delta t \right)$	
$v = \left(\frac{49}{3}\right) \text{m} \square \text{s}^{-1}$	$\Delta t = 0$ s or $\Delta t = 3{,}333$ s	
(3)=	∆t = 3,33 s (3,333 s) ✓	(4)

DOWNWARDS POSITIVE:

For stone X:

$$\Delta y = v_i \Delta t + \frac{1}{2} a(\Delta t)^2 \checkmark \qquad \Delta y = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$$

$$0 = (3v)(10) + \frac{1}{2}(9,8) (10)^2 \checkmark \qquad 0 = \left(-\frac{49}{3}\right) \Delta t + \frac{1}{2}(9,8) (\Delta t)^2 \checkmark$$

$$0 = 30 \Box v + 490$$

$$-490 = 30 \Box v$$

$$v = \left(-\frac{49}{3}\right) m \Box s^{-1}$$

$$\Delta t = 0 \text{ s or } \Delta t = 3,333 \text{ s}$$

$$\Delta t = 3,33 \text{ s } (3,333 \text{ s}) \checkmark$$

OPTION 2: UPWARDS POSITIVE: For stone Y: V_{B_i} = $\frac{49}{3}$ m s⁻¹ or 16.333 m s⁻¹ Consider upward motion: Consider upward motion: V_f = V_i + a Δ t V_f = V_i + a Δ t 0 = 16,333 + (9,8) Δ t Δ t = 1,666(1,67 s) Δ t(total) = 2 x 1,666 = 3,33 s

DOWNWARDS POSITIVE:

For stone X:

Consider upward motion:

$$\frac{0 = v_i + (9,8)(5)}{v_i = -49 \text{ m} \square \text{ s}^{-1}}$$

$$v_i = -49 \text{ m} \,\square\,\text{s}^{-1}$$

For stone Y:

$$v_{B_i} = -\frac{49}{3} \,\text{m} \,\square\,\text{s}^{-1} \,\,\text{or}\,\, -16.333 \,\,\text{m} \,\square\,\text{s}^{-1}$$

Consider upward motion:

$$0 = -16,333 + (9,8)\Delta t$$

$$\Delta t = 1,666(1,67 s)$$

 $\Delta t(total) = 2 \times 1,666 = 3,33 \text{ s}$

3.3 **POSITIVE MARKING FROM QUESTION 3.2:**

OPTION 1:

UPWARDS POSITIVE:

For stone Y

$$\Delta y = v_i \Delta t + \frac{1}{2} a (\Delta t)^2 \checkmark$$

$$H = \left(\frac{49}{3}\right) \left(\frac{5}{3}\right) + \frac{1}{2}(-9.8) \left(\frac{5}{3}\right)^2 \checkmark$$

$$H = \left(\frac{245}{18}\right) m$$

For stone X

$$\Delta y = v_i \Delta t + \frac{1}{2} a (\Delta t)^2$$

$$= (49)(5) \checkmark + \frac{1}{2}(-9,8)(5)^2 \checkmark$$

$$=\frac{245}{2}=9\left(\frac{245}{18}\right)\checkmark=9H$$

DOWNWARDS POSITIVE:

For stone Y

$$\Delta y = v_i \Delta t + \frac{1}{2}a(\Delta t)^2 \checkmark$$

$$H = \left(-\frac{49}{3}\right) \left(\frac{5}{3}\right) + \frac{1}{2}(9.8) \left(\frac{5}{3}\right)^2 \checkmark$$

$$H = \left(-\frac{245}{18}\right) m$$

For stone X

$$\Delta y = v_i \Delta t + \frac{1}{2} a(\Delta t)^2$$

= $(-49)(5) \checkmark + \frac{1}{2}(9.8)(5)^2 \checkmark$

$$= -\frac{245}{2} = 9\left(-\frac{245}{18}\right) \checkmark = 9H$$

OPTION 2:

UPWARDS POSITIVE:

For stone Y

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= (49)(5) $\checkmark + \frac{1}{2} (-9.8)(5)^2 \checkmark$

$$= 122,5 m$$

For stone X

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$
$$= (16.333)(1,666) + \frac{1}{2} (9,8)(1,666)^2 \checkmark$$

DOWNWARDS POSITIVE:

For stone Y

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

= (-49)(5) $\checkmark + \frac{1}{2}$ (9,8)(5)² \checkmark
= -122,5 m

For stone X

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$
= (-16.333)(1,666) + \frac{1}{2} (9,8)(1,666)^2 \sqrt{}
= -13,61 m = H
-13,61 X 9 = -122,49 m = 9H(122,5 m) \sqrt{}

(5)

3.4 POSITIVE MARKING FROM QUESTION 3.2:

Marking criteria:

- Correct shape (Should intersect t-axis) ✓
- Final velocity and initial velocity shown ✓
- 5 s shown for maximum height ✓

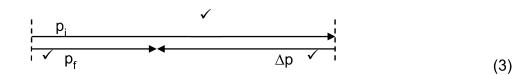
(3)

[14]

Marking Guidelines

QUESTION 4

- 4.1 The product of an object's mass and its velocity. ✓✓ (2 or 0) (2)
- 4.2 <u>The total (linear) momentum of an isolated system remains constant</u> (is conserved). ✓✓ (2)


4.3

OPTION 1	OPTION 2
$\sum p_i = \sum p_f$ Any one	$\Delta p_{A} = -\Delta p_{B}$ $m_{A}(v_{A_{f}} - v_{A_{i}}) = m_{B}(v_{B_{f}} - v_{B_{i}})$ $\underline{m_{A}(1-4)} \checkmark = -\underline{m_{A}(3-(-1))} \checkmark$ $m_{A}(-3) = -m_{B}(4)$ $\underline{m_{A}(-3)} = \underline{m_{B}(4)} \checkmark$ $\underline{m_{A}} = \frac{-4}{-3} = \frac{4}{3}$ $m_{A}: m_{B} = 4:3$ Any one \(\lambda \)

Marking criteria:

- Formula
- Right hand substitution into formula
- Left hand substitution into formula
- This step: $m_A(-3) = m_B(4)$

4.4

Criteria	
Large initial momentum in the same direction as final momentum	✓
 Small final momentum in the same direction as initial momentum Change in momentum in the opposite direction 	✓ ✓

[11]

(4)

(2)

QUESTION 5

5.1 The net work done on an object is equal to the change in the object's kinetic energy. ✓ ✓

OR:

The work done on an object by the net force is equal to the change in the object's kinetic energy. $\checkmark\checkmark$

OPTION 1:

5.2
$$W_{\text{net}} = \Delta E_{\text{K}} \text{ OR } W_{\text{f}} + W_{\text{w}} + W_{\text{N}} = \Delta E_{\text{K}}$$

$$f\Delta x \Box \cos \theta + mg\Delta x (\cos \theta) + 0 = \frac{1}{2} m (v_{\text{f}}^2 - v_{\text{i}}^2)$$

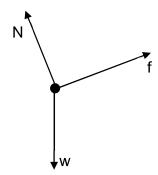
$$(45)(\Delta x)(\cos 180^\circ) + (10)(9.8)(\Delta x)(\cos 125^\circ) \checkmark + 0 = \frac{1}{2}(10)(0^2 - 8.84^2) \checkmark$$

$$-45 \Box \Delta x - 56.2105 \Box \Delta x = -390.728$$

$$\Delta x = 3.86 \text{ m}$$

$$x = 3.86 \text{ m} \checkmark$$
(4)

NB: The work done by the gravitational force W_w can also be calculated as follows:


$$W_w$$
 = mgsinθ∆xcos □
= (10)(9,8)(sin35°)xcos180°
= (-56,2105x)J

OR:
$$W_w = -\Delta Ep$$

= $mg(h_i - h_f)$
= $(10)(9,8)(0 - x\sin 35^\circ)$
= $(-56,2105x)J$

OPTION 2:

$$\begin{split} W_{nc} &= \Delta E_p + \Delta E_k \\ &= mg(h_f - h_i) + \frac{1}{2}m(v_f^2 - v_i^2) \\ W_f &= mg(h_f - h_i) + \frac{1}{2}m(v_f^2 - v_i^2) \\ f\underline{\Delta x}\cos\theta &= mg(h_f - h_i) + \frac{1}{2}m(v_f^2 - v_i^2) \\ \underline{(45)x\cos 180^\circ = (10)(9.8)(x\sin 35^\circ - 0)}\checkmark + \frac{1}{2}(10)(0^2 - 8.84^2)\checkmark \\ -45x &= 56.2105x - 390.728 \\ x &= 3.86 \ m\checkmark \end{split}$$

5.3

Accepted labels	
N✓	F _N /Normal force/F _{normal}
f✓	f/F _f / frictional force/ f _s
w√	F _g /mg/weight/gravitational force

Notes:

- Mark is awarded for label and arrow.
- Do not penalize for length of arrows
- Deduct 1 mark for any additional force.
- If force(s) do not make contact with dot/body: 2/3
- If arrows missing: 2/3

(3)

5.4 **OPTION 1**:

$$f_s = w_{||} = mgsin \theta \checkmark$$

=(10)(9,8)(sin 35°) \checkmark
 $f_s = 56,21 N \checkmark$

OPTION 2:

$$\mu_s = \tan\theta = \tan 35^\circ = 0,7002$$
 $f_s = \mu_s N = \mu_s mg \cos\theta \text{ (ANY ONE)}\checkmark$
 $= (0,7002)(10)(9.8)(\cos 35^\circ)\checkmark$
 $= 56,21 \text{ N}\checkmark$

(3)

[12]

QUESTION 6

6.1 The apparent change in frequency (or pitch) of the sound detected by a listener, because the sound source and the listener have different velocities relative to the medium of sound propagation. ✓✓ (2)

6.2
$$v = f_s \lambda \checkmark$$

 $340 = (300) \lambda \checkmark$
 $\lambda = 1,13 \text{ m} \checkmark$

 $\lambda = 1{,}13 \text{ m} \checkmark \tag{3}$

- 6.3 **ANY ONE:**
 - To monitor the heartbeat of a foetus (unborn baby).
 - To measure the rate of blood flow.✓

(1)

6.4.1

OPTION 1:	OPTION 2:
$f_{L} = \left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \checkmark$	$\lambda_{B} = \frac{v - v_{S}}{f_{S}} \checkmark$
$= \left(\frac{340}{340-30}\right)(300) \checkmark$	=\frac{340-30 }{300}
= 329,032 Hz	= 1,03 m✓
$v = f_L \lambda$	
340 = (329,032)λ ✓	
λ = 1,033 m ✓	

(4)

6.4.2

OPTION 1: OPTION 2:	
$f_{L} = \left(\frac{v \pm v_{L}}{v \pm v_{S}}\right) f_{S} \qquad \qquad \lambda_{A} = \left(\frac{V - V_{S}}{f_{S}}\right) \checkmark$	
$= \left(\frac{340}{340+30}\right)(300)\checkmark \qquad \qquad = \left(\frac{340+30}{300}\right)\checkmark$	
$= 275,676 \text{ H}_{\text{Z}}$ $= 1,23 \text{ m} \checkmark$	
$V = f \lambda$	
$(340) = (275,676) \lambda$	
$\lambda = \frac{340}{275,676}$	(3)
= 1,23 m \(
1,20	

6.5 Less than√

(1) **[14]**

QUESTION 7

- 7.1.1 Distance (between the point charges)/medium/air√ (1)
- 7.1.2 The electrostatic force is directly proportional to the product of charges. ✓ (1)

7.1.3 gradient =
$$\frac{\Delta F}{\Delta Q^2}$$
 NOTE: accept any value from the graph
$$= \frac{(4-3)X \cdot 10^{12}}{\Delta Q^2} \checkmark$$

$$= \frac{1 \times 10^{12}}{1 \checkmark}$$

$$= 1 \times 10^{12} \text{ N} \square \text{C}^{-2} \checkmark$$
(3)

7.1.4
$$F = \frac{KQ_1Q_2}{r^2} \checkmark$$

$$\frac{F}{Q^2} = \frac{k}{r^2}$$

$$1 \times 10^{12} \checkmark = \frac{9 \times 10^9}{r^2} \checkmark$$

$$r^2 = 9 \times 10^{-3}$$

$$r = 0,09487 \text{ m } (0,095 \text{ m}) \checkmark$$

$$NOTE: \text{ If } F = \frac{KQ^2}{r^2} \text{ is used, then maximum: } \frac{3}{4}$$

(4)

7.2.1 A region of space in which an electric charge experiences a force. ✓✓ (2)

7.2.2
$$E = \frac{kQ}{r^2} \checkmark$$

$$E_{\text{net,p}} = 0$$

$$\frac{kQ_1}{r^2} \checkmark = \frac{kQ_2}{r^2}$$

$$\frac{(9 \times 10^9)(8 \times 10^{-6})}{(0.4-d)^2} = \frac{(9 \times 10^9)(2 \times 10^{-6})}{d^2} \checkmark$$

ACCEPT: If 10⁻⁶ is omitted since it appears on both sides.

$$\frac{d^2}{(0,4-d)^2} = \frac{(2 \times 10^{-6})}{(8 \times 10^{-6})}$$
$$= 0,25$$
$$\frac{d}{0,4-d} = 0,5$$
$$d = 0,1333 \text{ m}$$

∴The distance is 0,1333 m ✓

(4)

7.2.3 **OPTION 1:**
$$Q_{\text{new}} = \frac{Q_1 + Q_2}{2}$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10^{-6}}{2} \checkmark$$

$$Q_{\text{new}} = \frac{8 \times 10^{-6} + 2 \times 10$$

(4) [19]

8.2.1 $V_{lost} = Ir$ 24 - 21,6 \checkmark = I(2) I = 1,2 A

 $I_{\text{total}} = 1,2 \text{ A}$ $V_{12 \Omega} = IR = (1,2)(12)\checkmark = 14,4 \text{ V}$ $V_{10 \Omega} = 21,6 - 14,4 = 7,2 \text{ V}$ $I_{10 \Omega} = \frac{\text{V}}{\text{R}} \checkmark = \frac{7,2}{10} \checkmark = 0,72 \text{ A}\checkmark$

 $I_{A} = 0.72 \text{ A}$ (5)

8.2.2 $I_X = 1,2\checkmark -0,72$ = 0,48 A $R_X = \frac{V}{I} \checkmark = \frac{7,2}{0,48} \checkmark$ = 1,50 $Ω\checkmark$

(4)

8.3 **POSITIVE MARKING FROM QUESTION 8.2.1**

P =
$$I^2R\checkmark$$

= $(1,2)^2\checkmark (12)\checkmark$
= 17,28 W \checkmark

(4)

- 8.4 Decreases ✓
 - Total resistance in the circuit increases. ✓
 - Current in the circuit decreases $\left(I \propto \frac{I}{R}\right)$. \checkmark
 - P = I ²R; when R is constant, P decreases ✓

(4)

[18]

[12]

QUESTION 9

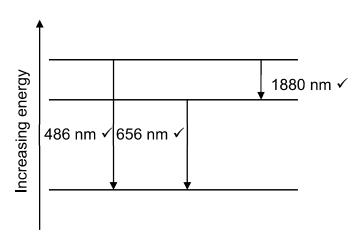
- 9.1.1 From electrical energy to mechanical energy. ✓ (1)
- 9.1.2 Clockwise. ✓ (2)
- 9.1.3 (carbon) brush \checkmark (1)
- 9.1.4 It reverses the direction of the current in the coil after each half-cycle. ✓ (1)
- 9.1.5 Increases. ✓
 The current increases ✓
 (2)
- 9.2.1 The rms potential difference is the AC potential difference which dissipates/produces the same amount of energy as an equivalent DC potential difference ✓ ✓

ACCEPT:

The rms voltage is the DC potential difference which dissipates/produces the (2) same amount of energy as the equivalent AC potential difference \checkmark \checkmark

9.2.2
$$V_{rms} = \frac{V_{rms}}{\sqrt{2}} \checkmark$$

$$200 = \frac{V_{rms}}{\sqrt{2}} \checkmark$$


$$V_{rms} = (200)(\sqrt{2})$$

$$V_{rms} = 282,8427 \ V \checkmark$$
(3)

Copyright reserved please turn over

- 10.1.1 The process whereby electrons are ejected from a metal surface when light of suitable frequency is incident on that surface. ✓√(2)
- 10.1.2 The minimum energy that an electron in the metal needs to be emitted from the metal surface.✓✓ (2)
- 10.1.3 (a) Frequency (of the incident light). ✓ (1)
 - (b) Frequency (of the incident light). ✓ (1)
- 10.1.4 E = hf $E = \frac{hc}{\lambda} \checkmark$ $\therefore E = \frac{\left(6.63 \times 10^{-34}\right) \left(3 \times 10^{8}\right)^{\checkmark}}{\left(450 \times 10^{-9}\right) \checkmark}$ $E = 4.42 \times 10^{-19} \text{ J} \checkmark$ Since photon energy is less than the work function of the metal, so, no emission occurs. \checkmark (5)

10.2.

[14]

TOTAL: 150