

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES P2 (CHEMISTRY)

PREPARATORY EXAMINATION
SEPTEMBER 2022

MARKS: 150

TIME: 3 hours

This question paper consists of 14 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- Number the answers correctly according to the numbering system used in this
 question paper.
- 5. Leave ONE line between two subquestions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your final numerical answers to a minimum of TWO decimal places.
- Give brief motivations, discussions et cetera where required.
- 12. Write neatly and legibly.

1.4 The graph below shows the change in potential energy for the hypothetical reaction:

$$3 \; P_2(g) \;\; + \;\; Q_2(g) \;\; \rightarrow \; 2 \; P_3 Q(g) \qquad \; \Delta H \;\; = \; - \; 40 kJ$$

Which ONE of the following could represent the activation energy for the forward reaction when a catalyst is added to the reaction?

A 50 kJ

B 60 kJ

C 90 kJ

D 120 kJ

1.5 The balanced equation below represents the decomposition of calcium carbonate.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

Which ONE of the following volume versus time graphs represents the formation of $CO_2(g)$?

A

В

C

D

(2)

(2)

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 D.

- 1.1 Which ONE of the following is the functional group of the esters?
 - Α -OH
 - -СНО В
 - C -cooc-
 - D -COOH (2)
- 1.2 An organic compound is **incorrectly** named as 4,5-dibromo-2-ethylhexane.

The CORRECT IUPAC name for this compound is:

- Α 2,3-dibromo-5-ethylhexane
- В 2,3-dibromo-5-methylheptane
- C 5,6-dibromo-3-methylheptane
- D 1,2-dibromo-1,5-dimethylhexane (2)
- 1.3 Which ONE of the following compounds has structural isomers?

В

C

D

(2)

1.6 Consider the balanced equation below:

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H < 0$

The graph below shows a change made to the system at equilibrium in a closed container at time t₁.

Which ONE of the following changes was made at time t_1 ?

- A A catalyst was added to the reaction.
- B The volume of the container was decreased.
- C The temperature of the container was increased.
- D Hydrogen gas was added to the reaction container.

(2)

1.7 The products formed during the hydrolysis of sodium ethanoate (CH₃COONa), are ...

- A Na⁺(aq) and OH⁻(aq)
- B Na⁺(aq) and CH₃COO⁻(aq)
- C $H_3O^+(aq)$ and $CH_3COO^-(aq)$
- D OH⁻(aq) and CH₃COOH(aq)

(2)

1.8 Which ONE of the following aqueous solutions will have the lowest pH at 25 °C?

	SOLUTION CONCENTRATION (mol.d						
А	HCl(aq)	0,3					
В	NaOH(aq)	0,2					
С	H₂SO₄(aq)	0,2					
D	CH₃COOH(aq)	0,3					

(2)

- 1.9 The salt bridge of a galvanic cell ...
 - A allows electrons to flow through it.
 - B allows anions to travel to the cathode.
 - C allows cations to travel to the cathode.
 - D provides ions to react at the anode and the cathode.

(2)

1.10 The simplified diagrams below represent two electrochemical cells using electrolytes of equal concentrations and identical batteries.

The electrode that shows the LARGEST increase in mass per unit time is:

- A E
- B F
- C G
- D H

(2)

[20]

QUESTION 2 (Start on a new page.)

The letters **A** to **F** in the table below represent six organic compounds.

А	5-ethyl-2,6-dimethylhept-3-yne	В	CH ₃ CH ₂ CH ₃
С	C ₅ H ₁₀ O	D	C ₅ H ₁₂ O
E	H O H H H H H H H H H H H H H H H H H H		Н
F	C ₄ H ₉ OH	KONALO PRESIDENCIA	

Use the information in the table to answer the questions that follow.

2.1 For compound **A**, write down the:

2.2 Compound C is a FUNCTIONAL isomer of compound E.

2.3 Compound **D** is a TERTIARY alcohol. Write down the:

2.4 Compound **F** reacts with propanoic acid in an acid catalysed reaction to produce a straight chain organic product.

[14]

Copyright Reserved Please Turn Over

QUESTION 3 (Start on a new page.)

An investigation was conducted to determine the effect of one of the factors on the boiling points of the alcohols. Three **straight chain primary** alcohols, **P**, **Q** and **R** were used. The results obtained are shown in the table below:

Alcohol	Formula	Boiling Point (°C)				
P	C ₂ H ₅ OH	78				
Q	C ₅ H ₁₁ OH	117				
R	C ₃ H ₇ OH	97				

3.1	Define boiling point.	(2)
3.2	Is this a fair investigation? Choose from YES or NO. Give a reason for the answer.	(2)
3.3	Write down a suitable conclusion for this investigation.	(2)
3.4	Fully explain the answer to QUESTION 3.3	(2)
3.5	The investigation is repeated using HALF the original volume of alcohol ${f R}$, while keeping all OTHER CONDITIONS THE SAME.	
	How will this change affect the boiling point of alcohol R ? Choose from INCREASE, DECREASE or REMAINS UNCHANGED.	(1)
3.6	Which ONE of the alcohols has the highest vapour pressure? Choose from P , Q or R .	
	Give a reason for the answer.	(2)
3.7	How will the boiling point of a straight chain compound, C ₆ H ₁₄ , compare to that of alcohol Q ? Choose from GREATER THAN, LESS THAN or EQUAL TO.	
	Fully explain the answer.	(5)
		[16]

QUESTION 4 (Start on a new page.)

In the flow diagram below, I, II, III, IV and V represent organic reactions. Study the flow diagram and answer the questions that follow.

- 4.1 Name the type of addition reaction represented by I (1)
- 4.2 Name the type of addition reaction represented by **II** (1)
- 4.3 Which of the above reactions uses a platinum catalyst? (1)
- 4.4 For reactions III and IV, a base is required.
 - 4.4.1 Write down ONE similar property of the bases used in both reactions. (1)
 - 4.4.2 Describe fully how the bases used in both reactions are different. (2)
- 4.5 Write down a balanced equation for reaction II, using structural formulae. (3)
- 4.6 Name the TYPE of substitution reaction represented by IV. (1)
- 4.7 Using molecular formulae, write down a balanced equation for the complete combustion of compound **X**. (3)
- 4.8 Name the TYPE of elimination reaction represented by **V** (1)
- 4.9 Compound Y is also produced in a cracking reaction as shown

$$C_7H_{16} \rightarrow H_2 + Y + 2K$$

Write down the IUPAC name of compound K. (3)

[17]

QUESTION 5 (Start on a new page)

A group of learners use the reaction of **excess** hydrochloric acid with magnesium powder to investigate ONE of the factors that influences reaction rate. The balanced equation for the reaction is:

$$Mg(s) + 2HCl(aq) \rightarrow MgCl_2(aq) + H_2(g)$$

They use hydrochloric acid of the **SAME CONCENTRATION** and **x** g of magnesium powder in each of TWO experiments, **I** and **II**. Both experiments are carried out at 20°C.

The graph below shows curves I and II that were obtained for the TWO experiments I and II respectively. Curve I is INCOMPLETE.

- 5.1 Define *reaction rate*, in words. (2)
- 5.2 Calculate the average rate of reaction (in cm³.s⁻¹), for experiment **II**, for the time interval 30 s to 60 s. (3)
- 5.3 Which ONE of the experiments, I or II, took place at a slower rate?

 Give a reason by referring to the graphs. (2)
- 5.4 Write down the factor responsible for the difference in the rate of the reactions. (1)
- 5.5 Using the collision theory, fully explain how the factor in QUESTION 5.4 affects the rate of the reaction. (3)
- 5.6 Calculate the mass of magnesium powder remaining in the container at 150s for experiment I. Take the molar gas volume to be 24040 cm³.mol⁻¹ at 20 °C. (8) [19]

QUESTION 6 (Start on a new page)

Consider the reaction represented by the balanced equation below:

$$4HC\ell(g) + O_2(g) \rightleftharpoons 2H_2O(g) + 2C\ell_2(g)$$

Initially, 1 mole of HC ℓ (g) and an UNKNOWN mass of O₂ (g) were mixed in a sealed 5 dm³ container. At 600 °C equilibrium was established and 28,40 g of C ℓ ₂ (g), was present in the container.

6.1 Define the term chemical equilibrium. (2)6.2 Give a reason why the reaction above is homogenous. (1)Calculate the initial mass of O₂ (g) if the equilibrium constant, Kc, is 800 6.3 at 600°C. (8)6.4 State Le Chatelier's principle. (2)6.5 The volume of the container is now decreased to 2,50 dm³, while the temperature is kept at a constant 600 °C. How will each of the following be affected? Choose from INCREASES, DECREASES or REMAINS THE SAME. 6.5.1 The value of Kc. (1) 6.5.2 The mass of $Cl_2(g)$ in the container. (1)Explain the answer to QUESTION 6.5.2 by referring to Le Chatelier's Principle. 6.6 (2)The temperature of the container is now increased. When equilibrium is 6.7 re-established the value of Kc is 450. Is the heat of the forward reaction, (ΔH), POSITIVE or NEGATIVE? 6.7.1 (1)Explain the answer to QUESTION 6.7.1 by referring to Le Chatelier's 6.7.2 Principle. (3) [21]

ESTION 7 (Start on a new page.)

Consider the following reaction:

$$H_2SO_4(aq) + H_2O(\ell) \rightarrow HSO_4^-(aq) + H_3O^+(aq)$$

7.1.1 Define an ampholyte.

(2)

7.1.2 Apart from $H_2O(\ell)$, which substance in the above equation can act as an ampholyte?

(1)

- A solution of hydrochloric acid has a concentration of 0,1 mol.dm⁻³.
- 7.2.1 Calculate the pH of this solution.

(3)

A flask contains 200 cm³ of an aqueous solution of sodium hydroxide (NaOH), of concentration 0,1 mol.dm⁻³. To this flask, 50 cm³ of an aqueous solution of barium hydroxide, Ba(OH)₂, of UNKNOWN concentration is added, giving a total volume of 250 cm³.

In a titration, 20 cm³ of this mixture is completely neutralized by 30 cm³ of a hydrochloric acid solution of concentration of 0,1 mol.dm⁻³.

The ionic reaction is represented by the following equation:

$$H_3O^+(aq) + OH^-(aq) \rightarrow H_2O(\ell)$$

7.2.2 What is the pH of the solution when the endpoint of the titration is reached? Choose from LESS THAN 7, EQUAL TO 7 or GREATER THAN 7.

(1)

7.2.3 Calculate the number of moles of hydroxide ions (OH-) present in 20 cm³ of the mixture of sodium hydroxide and barium hydroxide solutions.

(4)

7.2.4 Calculate the initial concentration of the barium hydroxide, Ba(OH)₂, solution that was added to the solution of sodium hydroxide.

(7)

QUESTION 8 (Start on a new page.)

The equation below represents a reaction that takes place under standard conditions in an electrochemical cell.

$$Fe^{2+}(aq) + X^{+}(aq) \rightarrow Fe^{3+}(aq) + X(s)$$

 ${\sf X}$ is an unknown metal. The initial emf of this cell is + 0,03 V. The cell uses a platinum electrode.

- 8.1 Write down the type of electrochemical cell in which the above reaction takes place. (1)
- 8.2 State TWO standard conditions for the above cell. (2)
- 8.3 Is the above reaction spontaneous or non-spontaneous? Give a reason for the answer. (2)
- 8.4 Write down the:
 - 8.4.1 Cell notation for the above cell (3)
- 8.4.2 Half reaction that takes place at the cathode in the above electrochemical cell (2)
- 8.5 Identify metal X, with the aid of a calculation. (4)

[14]

ESTION 9 (Start on a new page.)

The simplified diagram below shows an electrolytic cell used to electroplate iron spoons with copper.

1 Define the term *electrolyte*.

- (2)
- 2 Identify the anode in this cell. Choose between electrode P and the iron spoons.
- (1)
- Write down the equation for the half reaction that results in the plating of the spoon.
- (2)
- The polarity of the DC source is reversed. How will the mass of the electrode **P** be affected? Choose from INCREASES, DECREASES or REMAINS the same.
 - Give a reason for the answer.

- (2)
- .5 The copper used in this electrolytic cell is NOT PURE. It contains a small percentage of zinc.
- 9.5.1 Write down the NAME or FORMULA of TWO cations present in the electrolyte.
- (2)
- 9.5.2 It is observed that the iron spoons are not coated with zinc. Explain this observation in terms of the relative oxidising strengths of the substances
- [11]

(2)

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τ ^θ	273 K
Charge on electron Lading op electron	E	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$								
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$								
$\frac{c_a v_a}{c_b v_b} = \frac{n_a}{n_b}$	pH = -log[H3O+]								
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	$K_W = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$								
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \ / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$									
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta - E_{oksidasie}^\theta$									
or/of $ E_{\text{cell}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{oxidising agent}}^{\theta} - E_{\text{reducing agent}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{oxidising agent}}^{\theta} / E_{\text{oxidising agent}$	$= E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$								

Ľ 3

2 2

5 5

13 F 13

66 В

C 88

る数

S C M

95 Am

2 Q

ε Z Ω

23 238 238

2 T

232 232

																							-
	S 18	7	<u>o</u> -	4 5	2	20	\$	4	40	36	¥	84	25	×	131	98	Ç			l- dram	3	175	669
	59		***************************************	တ	U. 0'p	<u>ئ</u>	1	3,0	4.9		8,2 00	8		9'7	127		\$ 5°2			2	٥	13	
	\$\$			œ		ద	9	2,5	32			20			128	8	0,s Q			69	E	8	* * *
	S 2					4	بر	<u>α</u>	ŗ	33	2,0 AS	72			122	83	************	209		89	u	167	1
	48			ဖ		2	4	ري 2,1	78	32	9	73	20	S	<u>ئ</u>	8	8,1 6	202		67	<u>0</u>	Ŕ	1
	? ()			LC.		denn denn	13	A 8,18	2	<u>ب</u>	0,1 0,0 0,1 8,1	2		8,1 8,1	<u>_</u>	8	8,1 5 8,1	204		99	à	163	
NTS	2			L	0,5	,	<u> </u>	9'l		30	9'L	65	48	2'1 8	2	8	anista (201		65	<u>0</u>	159	+
RIODIC TABLE OF ELEMENTS ODIEKE TABEL VAN ELEMENTE	Aron Arons									29	9'L		47	A DO	200	62	3	197		64	D O	ol ol	
LE OF	6			-	5 00			nass	0000	28	6'L	50	46	6'L	106	82	مَ	195		63	3	152	
NC TAB	o	Doc.	ō	3	Simbool			fomic n	toomm	27	4600	59	45	2,2	103	72	Same	192		62	E S	100 00	
	00	Atomic number	Atoomgetal ↓	29	3	S J	4	ative a	Benaderde relatiewe atoommassa	26		26	44		Ş	92	S	190		61	<u> </u>		
3. THE	~	Ato	₹	L	6' L	***********		Tate Z	rde rela	25	9'I		43	48	ı	28	Re	8		09		4	
TABLE 3: THE PE TABEL 3: DIE PERI	9		1	31 31	Electronegativity Flektronegatiwiteit			Approximate relative atomic mass	Benade	24	Ü	52	42	100000	96	74		60 44		69	à	. 4	CHART
F	SO.	Ī	KEYISLEUIEL	a a	ectron					23		· Č	4	8'1 2		73		<u>&</u>		220	ي و	9 4 6	
	4	2	2	8	r u					23		- 4	5 04			72		-			annie de la constante de la co		
	က									24	3 °C		3 65	<i>p</i> '		2 8	9'I		68	AC			
				r	paramona arraka sa						٤'	<u> </u>		۲'	<u> </u>	_							
	N E				5, 4 0		D 2	Z Z		1 8	0°		2 00	0°		200	6°		88	6,0 8,0	226		
					න "	-	4) a	2 >		0 1			2 2	4.4		87	L			
	*			Same	82000	SCORE .	7	- 2		7			3 6			אןכ			00				
		L	۲,5		0	<u>, †</u>		6	0		8,	0		8'	<u>U</u>		<u>L</u> '	<u>U</u>	<u> </u>	<u> </u>			

Copyright reserved

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/ <i>Halfreaksies</i> ⊏ ⁰ ///									
Half-reactions	IHai	treaksies	Ε ^θ (V)						
F ₂ (g) + 2e ⁻	name.	2F-	+ 2,87						
Co³+ + e⁻	u	Co ²⁺	+ 1,81						
H ₂ O ₂ + 2H ⁺ +2e ⁻	quit.	2H ₂ O	+1,77						
MnO	quit	$Mn^{2+} + 4H_2O$	+ 1,51						
Cl₂(g) + 2e-		2Cl ⁻	+ 1,36						
Cr ₂ O ²⁻ ₇ + 14H ⁺ + 6e ⁻		2Cr ³⁺ + 7H ₂ O	+ 1,33						
O ₂ (g) + 4H ⁺ + 4e ⁻		2H ₂ O	+ 1,23						
MnO ₂ + 4H ⁺ + 2e ⁻	-	$Mn^{2+} + 2H_2O$	+ 1,23						
Pt ²⁺ + 2e ⁻	-	Pt	+ 1,20						
$Br_2(\ell) + 2e^{-\epsilon}$	-	2Br ⁻	+ 1,07						
$NO_3^- + 4H^+ + 3e^-$	-	$NO(g) + 2H_2O$	+ 0,96						
Hg ²⁺ + 2e ⁻	==	Hg(ℓ)	+ 0,85						
Ag+ + e-	un b	Ag	+ 0,80						
$NO_3^- + 2H^+ + e^-$	-	$NO_2(g) + H_2O$	+ 0,80						
Fe ³⁺ + e ⁻		Fe ²⁺	+ 0,77						
$O_2(g) + 2H^+ + 2e^-$		H ₂ O ₂	+ 0,68						
l ₂ + 2e ⁻		21-	+ 0,54						
Cu⁺ + e⁻	wat	Cu	+ 0,52						
SO ₂ + 4H ⁺ + 4e ⁻	400	S + 2H ₂ O	+ 0,45						
2H ₂ O + O ₂ + 4e ⁻	***	40H~	+ 0,40						
Cu ²⁺ + 2e ⁻	-	Cu	+ 0,34						
$SO_4^{2-} + 4H^+ + 2e^-$		$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + e ⁻	4	Cu⁺	+ 0,16						
Sn ⁴⁺ + 2e ⁻	-	Sn ²⁺	+ 0,15						
S + 2H+ + 2e-	-	H ₂ S(g)	+ 0,14						
2H ⁺ + 2e	quin.	H ₂ (g)	0,00						
Fe ³⁺ + 3e ⁻	day.	Fe	- 0,06						
Pb ²⁺ + 2e ⁻	-	Pb C=	- 0,13						
Sn ²⁺ + 2e ⁻	-	Sn N:	- 0,14						
Ni ²⁺ + 2e ⁻ Co ²⁺ + 2e ⁻	412	Ni Co	- 0,27						
Cd ²⁺ + 2e ⁻	- Second	Co Cd	- 0,28 - 0,40						
Cr ³⁺ + e ⁻	-	Cr ²⁺	- 0,40 0,41						
Fe ²⁺ + 2e ⁻	-	Fe	- 0,41 - 0,44						
Cr ³⁺ + 3e ⁻		Cr	- 0,74						
Zn ²⁺ + 2e ⁻	4000	Zn	- 0,76						
2H ₂ O + 2e ⁻	-	H ₂ (g) + 2OH	- 0,83						
Cr ²⁺ + 2e ⁻		Cr	- 0,91						
Mn ²⁺ + 2e	day.	Mn	- 1,18						
Al ³⁺ + 3e	-	Αℓ	- 1,66						
Mg ²⁺ + 2e ⁻		Mg	- 2,36						
Na⁺ + e⁻	wante.	Na	- 2,71						
Ca ²⁺ + 2e ⁻		Ca	- 2,87						
Sr ²⁺ + 2e ⁻	quit.	Sr	- 2,89						
Ba ²⁺ + 2e ⁻	any	Ва	- 2,90						
Cs+ + e-	quit.	Cs	- 2,92						
K+ + e-	specific specific	K	- 2,93						
Li ⁺ + e ⁻		Li	- 3,05						

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

B	EL 4B: STANDAA	RD.	REDUKSIEP	
	Half-reactions/	Hal	freaksies	Ε ^θ (V)
	Li+ + e-	day.	Li	- 3,05
	K+ + e-		K	2,93
	Cs+ + e-	-	Cs	- 2,92
	Ba ²⁺ + 2e ⁻	-	Ва	- 2,90
	Sr ²⁺ + 2e ⁻		Sr	- 2,89
	Ca ²⁺ + 2e ⁻		Ca	- 2,87
	Na+ + e-	-	Na	- 2,71
	Mg ²⁺ + 2e ⁻		Mg	- 2,36
	Aℓ³+ + 3e-	=	Αl	- 1,66
	Mn ²⁺ + 2e ⁻	-	Mn	- 1,18
7	Cr ²⁺ + 2e ⁻	72	Cr	- 0,91
and an article and a second	2H ₂ O + 2e ⁻		H ₂ (g) + 2OH⁻	- 0,83
distance of the last	Zn ²⁺ + 2e ⁻		Zn	- 0,76
-	Cr ³⁺ + 3e ⁻	-	Cr	- 0,74
	Fe ²⁺ + 2e ⁻²	- Carrier	Fe	- 0,44
200200000000000000000000000000000000000	Cr ³⁺ + e ⁻	#	Cr ²⁺	- 0,41
TO SECURE	Cd ²⁺ + 2e ⁻	411	Cd	- 0,40
	Co ²⁺ + 2e ⁻	day	Co	- 0,28 - 0,27
	Ni ²⁺ + 2e ⁻	**	Ni Sn	- 0,27 - 0,14
House	Sn ²⁺ + 2e ⁻ Pb ²⁺ + 2e ⁻	-	Pb	- 0,14
NAME OF TAXABLE PARTY O	Fe ³⁺ + 3e ⁻		Fe	- 0,13
-	2H ⁺ + 2e ⁻		H₂(g)	0,00
COMMODOR	S + 2H ⁺ + 2e ⁻		H ₂ S(g)	+ 0,14
	Sn ⁴⁺ + 2e ⁻		Sn ²⁺	+ 0,15
THE REAL PROPERTY.	Cu ²⁺ + e ⁻		Cu ⁺	+ 0,16
	SO 4 + 4H+ + 2e-	-	SO ₂ (g) + 2H ₂ O	+ 0,17
	T Cu ²⁺ + 2e⁻		Cu	+ 0,34
DECEMBER OF	2H ₂ O + O ₂ + 4e ⁻	-	40H-	+ 0,40
Seminority	SO ₂ + 4H ⁺ + 4e ⁻		S + 2H ₂ O	+ 0,45
-	Cu+ + e-		Cu	+ 0,52
West Company	l ₂ + 2e ⁻	-	21-	+ 0,54
STREET, STREET	O ₂ (g) + 2H ⁺ + 2e ⁻		H ₂ O ₂	+ 0,68
parameters.	Fe ³⁺ + e ⁻		Fe ²⁺	+ 0,77
	NO 3 + 2H+ + e-	-	$NO_2(g) + H_2O$	+ 0,80
THE RESIDENCE AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED IN	Ag⁺ + e⁻		Ag	+ 0,80
THE PERSON NAMED IN	Hg ²⁺ + 2e ⁻	***	Hg(ℓ)	+ 0,85
Systematical Systems	NO $_3^{\Box}$ + 4H ⁺ + 3e ⁻	deny.	NO(g) + 2H ₂ O	+ 0,96
SHEET PROMISES	$Br_2(\ell) + 2e^-$	==	2Br	+ 1,07
None Control of the C	Pt ²⁺ + 2 e	****	Pt	+ 1,20
SECTION SECTIO	MnO ₂ + 4H ⁺ + 2e ⁻	-	Mn ²⁺ + 2H ₂ O	+ 1,23
CONTRACTOR OF THE PERSON	O ₂ (g) + 4H ⁺ + 4e ⁻	 2	2H ₂ O	+ 1,23
Valdermoon Square,	$Cr_2O_7^{2()} + 14H^+ + 6e^-$		2Cr ³⁺ + 7H ₂ O	+ 1,33
* CONTRACTOR CONTRACTO	Cl ₂ (g) + 2e		2Ct-	+ 1,36
Statement of the Statem	MnO [□] + 8H+ + 5e-		$Mn^{2+} + 4H_2O$	+ 1,51
and a second	H ₂ O ₂ + 2H ⁺ +2 e ⁻		2H ₂ O	+1,77
Section 1	Co ³⁺ + e ⁻		Co ²⁺	+ 1,81
-	F ₂ (g) + 2e ⁻		2F-	+ 2,87

Increasing reducing ability/Toenemende reduserende vermoë