

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION 2022

11102

TECHNICAL SCIENCES

PAPER 2

TECHNICAL SCIENCES: Paper 2

TIME: 1½ hours

MARKS: 75

10 pages + 4 information sheets

XØ5

TECHNICAL SCIENCES (Paper 2)	11102/22	2
------------------------------	----------	---

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of SIX questions. Answer ALL the questions in the ANSWER BOOK.
- 2. Start EACH question on a NEW page in the ANSWER BOOK.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Leave ONE line between two sub-questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 5. You may use a non-programmable calculator.
- 6. You are advised to use the attached DATA SHEETS.
- 7. Round-off your FINAL numerical answers to a minimum of TWO decimal places.
- 8. Give brief motivations, discussions, etc., where required.
- 9. Write neatly and legibly.

TECHNICAL SCIENCES		2
(Paper 2)	11102/22	3

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A - D) next to the question numbers (1.1 to 1.6) in the ANSWER BOOK, e.g. 1.7 D.

1.1	Whic ketor	th of the following compounds represents the first member of the nes?	
	Α	НСНО	
	В	CH ₃ OH	
	С	H ₃ COCH ₃	
	D	CH₃CH₂COOH	(2)
1.2	Whic	ch of the following compounds is saturated?	
	Α	C ₄ H ₁₀	
	В	C ₅ H ₁₀	
	С	C₅H ₉ OH	
	D	C_6H_{10}	(2)
1.3		sider the compound with molecular formula of C ₅ H ₁₁ OH. To which ologous series does this compound belong?	
	Α	Aldehydes	
	В	Ketones	
	С	Esters	
	D	Alcohols	(2)
1.4	Meth	yl ethanoate is prepared by the reaction between	
	Α	ethanoic acid and ethanol.	
	В	ethanoic acid and methanol.	
	С	methanoic acid and methanol.	
	D	methanoic acid and ethanol.	(2)

TECHNICAL SCIENCES (Paper 2)	11102/22	4
------------------------------	----------	---

- 1.5 Which of the following definitions does NOT describe electrolysis?
 - A The dissolution of a substance using an electrical current
 - B The chemical process where electrical energy is converted to chemical energy
 - C The use of electrical energy to cause a chemical change
 - D The use of chemical energy to cause an electrical change (2)
- 1.6 Choose the correct comparison between an electrolytic cell and a galvanic cell.
 - A galvanic cell is an electrochemical cell where electrical energy is converted into chemical energy and an electrolytic cell is where chemical energy is converted into electrical energy.
 - B An electrolytic cell is an electrochemical cell where electrical energy is converted into chemical energy and a galvanic cell is where chemical energy is converted into electrical energy.
 - C A galvanic cell is a non-spontaneous cell, whereas an electrolytic cell is a spontaneous cell.
 - D Both cells are electrochemical cells that convert electrical energy into chemical energy.

(2) **[12]**

TECHNICAL SCIENCES		_
(Paper 2)	11102/22	อ

QUESTION 2 (Start on a new page.)

Letters A to F in the table below represent SIX organic molecules.

Α	C ₄ H ₈	В	Ethane
С	Bromine	D	Ethanoic acid
E	H O H H	F	H-C-O-H H

2.1 Define a functional group.

(2)

2.2 Give the IUPAC name of compound **E**.

- (2)
- 2.3 From the list above choose a substance that is used in the laboratory for the preparation of **E**. Write down ONLY the letter.
- (1)
- 2.4 Give the name or formula of the catalyst that is needed for the reaction referred to in QUESTION 2.3.
- (1)
- 2.5 Write down the structural formulae of THREE isomers of substance **A**. Write down the IUPAC name under each isomer.
- (6)

2.6 Write down the structural formula of compound **D**.

(2)

2.7 Define an *unsaturated hydrocarbon*.

- (2)
- 2.8 Identify an unsaturated hydrocarbon from the table above. Write down ONLY the letter of the correct answer.

(1) **[17]**

TECHNICAL SCIENCES		6
(Paper 2)	11102/22	O

QUESTION 3 (Start on a new page.)

Knowledge of the boiling points may be used to identify chemical compounds. The boiling points of four organic compounds, represented by the letters **A**, **B**, **C** and **D** are shown in the table below.

	Compound	Boiling Point °C
Α	Propane	-42
В	Pentane	36
С	2-methylbutane	27,8
D	Pentan-1-ol	137

3.1 Define the term boiling point. (2) 3.2 Between A and B, which has the higher vapour pressure? (1) 3.3 An unknown straight chain alkane has a boiling point of -0,5 °C. Use the information in the table above to identify this alkane and write down its IUPAC name. (2) 3.4 **B** and **C** are structural isomers. 3.41 Define the term structural isomer. (2) 3.4.2 Explain why **B** has a higher boiling point than **C**. Refer to chain length/ branch, intermolecular forces and energy in your explanation. (3)

[10]

TECHNICAL SCIENCES		7
(Paper 2)	11102/22	•

QUESTION 4 (Start on a new page.)

Pentane is one of the important hydrocarbons used in the synthesis of petroleum for vehicles.

- 4.1 Write down the balanced chemical reaction of the combustion of pentane in excess oxygen. (3)
- 4.2 The flow diagram below shows how pentane can be converted to several other organic compounds. Study the reactions (A to E) and answer the questions that follow.

- 4.2.1 Which reaction is a representation of hydrohalogenation? (1)
- 4.2.2 From the flow diagram above, write a balanced chemical equation for reaction **B** to show the formation of the major product. (3)
- 4.2.3 Write a suitable name given to reaction **C** in the flow diagram above. (1)
- 4.2.4 Which catalyst may be used in reaction **C** above? (1)
- 4.3 Reaction **E** results in the formation of alcohol as one of the products.
 - 4.3.1 What are the TWO reaction conditions for reaction **E**? (2)
 - 4.3.2 Write down the IUPAC name of the alcohol formed in the reaction **E** above. (1) **[12]**

TECHNICAL SCIENCES		0
(Paper 2)	11102/22	0

QUESTION 5 (Start on a new page.)

The electrochemical cell below is used to decompose copper(II)chloride.

Use the above diagram to answer the following questions.

- 5.1 What type of electrochemical cell is represented in the diagram above? (1)
- 5.2 Identify the following electrodes as anode or cathode:
 - 5.2.1 Electrode **A** (1)
 - 5.2.2 Electrode **B** (1)
- 5.3 What type of electrochemical cell does component **C** represent? (1)
- 5.4 To which electrode will the copper ions be attracted? (1)
- 5.5 Write down the oxidation half-reaction for the above electrochemical cell. (2)
- 5.6 Write down the reduction half-reaction for the above electrochemical cell. (2)
- 5.7 Write down the net balanced chemical equation for the reaction in the electrochemical cell above. (3)
- 5.8 State ONE precautionary measure that must be taken into consideration while the cell is in operation. (1)

TECHNICAL SCIENCES (Paper 2)	11102/22	9
------------------------------	----------	---

5.13	One of the observations is that the concentration of ions in the electrolyte used remains constant. Provide a suitable explanation for this observation.	(1) [20]
5.12	At which electrode (cathode or anode) will they connect gold as an electrode?	(1)
5.11	Give a suitable name for the process referred to in QUESTION 5.10 above.	(1)
5.10	Two Grade 12 learners want to use the cell to coat copper with a layer of gold. Name the TWO electrodes that the learners can use to replace the graphite electrodes in this cell.	(2)
5.9	What energy conversion takes place in this type of cell?	(2)

TECHNICAL SCIENCES (Paper 2) 1	1102/22	10
--------------------------------	---------	----

QUESTION 6 (Start on a new page.)

Fossil fuel is a non-renewable source of energy which is being exhausted. This means that new sources of energy must be developed, which is called alternative energy, for example, environmentally-friendly hydrogen fuel cells.

Use the following diagram of a hydrogen fuel cell to answer the questions that follow.

- 6.1 Name the TWO reactants used in the hydrogen fuel cell. (2)
- 6.2 Why is a catalyst used in this hydrogen fuel cell? (1)
- 6.3 Name ONE advantage of hydrogen fuel cells over batteries, gasoline and diesel engines.

[4]

(1)

TOTAL: 75

TECHNICAL SCIENCES		44
(Paper 2)	11102/22	- ' '

DATA FOR TECHNICAL SCIENCES GRADE 12/ GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 PAPER/VRAESTEL 2

TABLE/TABEL 1

PHYSICAL CONSTANTS/FISIESE KONSTANTES												
CONSTANT/KONSTANTE SYMBOL/SIMBOOL VALUE/WAARDE												
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J.s										
Speed of light Spoed van lig	С	3 x 10 ⁸ m.s ⁻¹										

TABLE/TABEL 2

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG										
Speed/Spoed	$c = f \lambda$									
Energy/Energie	E = h f									
	or/of									
	$E=\frac{hc}{\lambda}$									

TABLE/TABEL 3

ELECTROCHEMISTRY/ELEKTROCHEMIE												
Emf/ <i>Emk</i>	$E^{ heta}_{cell} = E^{ heta}_{cathode} - E^{ heta}_{anode}$	$/$ $E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$										
	or/of											
	$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation}$	$/$ $E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$										
	or/of											
	$E_{cell}^{\theta} = E_{oxidising\ agent}^{\theta} - E_{reducing\ agent}^{\theta}$	/ $E_{\text{sel}}^{\theta} = E_{\text{oksideermiddel}}^{\theta} - E_{\text{reduseermiddel}}^{\theta}$										

11102/22

TABLE 4A: STANDARD REDUCTION POTENTIALS/ TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	Halfı	reaksies	Ε ^θ (V)
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
Co ³⁺ + e ⁻			+ 1,81
$H_2O_2 + 2H^+ + 2e^-$	\rightleftharpoons	2H ₂ O	+1,77
MnO ₄ + 8H+ + 5e ⁻	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51
$C\ell_2(g) + 2e^-$	\rightleftharpoons	2Cℓ ⁻	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻	\rightleftharpoons	2H ₂ O	+ 1,23
$MnO_2 + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20
Br ₂ (ℓ) + 2e ⁻	\rightleftharpoons	2Br⁻	+ 1,07
$NO_3^- + 4H^+ + 3e^-$	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96
Hg²+ + 2e⁻	\rightleftharpoons	$Hg(\ell)$	+ 0,85
Ag+ + e-	\rightleftharpoons	Ag	+ 0,80
$NO_3^- + 2H^+ + e^-$		$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68
l ₂ + 2e ⁻	\rightleftharpoons	2l ⁻	+ 0,54
Cu+ + e⁻	\rightleftharpoons	Cu	+ 0,52
$SO_2 + 4H^+ + 4e^-$	\rightleftharpoons	S + 2H2O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+ 0,40
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu+	+ 0,16
Sn⁴+ + 2e⁻		Sn ²⁺	+ 0,15
S + 2H+ + 2e ⁻	\rightleftharpoons	$H_2S(g)$	+ 0,14
2H⁺ + 2e⁻	=	H ₂ (g)	0,00
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13
Sn²+ + 2e⁻	\rightleftharpoons	Sn	- 0,14
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH⁻	- 0,83
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
Mn ²⁺ + 2e ⁻	,	Mn	- 1,18
$A\ell^{3+} + 3e^{-}$,	Al	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na+ + e-	=	Na Co	- 2,71
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87
Sr ²⁺ + 2e ⁻	=	Sr Bo	- 2,89
Ba ²⁺ + 2e⁻ Cs⁺ + e⁻	≓	Ba Cs	- 2,90 - 2,93
Cs ⁺ + e ⁻	7	K	- 2,92 - 2,93
Li+ + e-	-	K Li	- 2,93 - 3,05
Li + e	_	LI	- 3,03

Increasing reducing ability/Toenemende reduserende vermoë

11102/22

Increasing oxidising ability/Toenemende oksiderende vermoë

Half-reactions/Halfreaksies ⊢A											
naii-reactions/	Ε ^θ (۷)										
Li⁺ + e⁻	\rightleftharpoons	Li	- 3,05								
K+ + e⁻	\rightleftharpoons	K	- 2,93								
Cs+ + e-	\rightleftharpoons	Cs	- 2,92								
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	- 2,90								
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89								
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87								
Na+ + e⁻	\rightleftharpoons	Na	– 2,71								
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36								
$A\ell^{3+} + 3e^{-}$	\rightleftharpoons	Αl	- 1,66								
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,18								
Cr ²⁺ + 2e ⁻	\rightleftharpoons		- 0,91								
2H ₂ O + 2e ⁻		,	- 0,83								
Zn ²⁺ + 2e ⁻			- 0,76								
Cr ³⁺ + 3e ⁻	<i>–</i>	Cr	- 0,74								
Fe ²⁺ + 2e ⁻	<i>–</i>	Fe	- 0,44								
Cr ³⁺ + e ⁻	=		- 0,41								
Cd ²⁺ + 2e ⁻	=		- 0,40								
Co ²⁺ + 2e ⁻		Co	- 0,28								
Ni ²⁺ + 2e ⁻ Sn ²⁺ + 2e ⁻		Ni Sn	- 0,27 - 0,14								
Pb ²⁺ + 2e	+	Pb	- 0,14 - 0,13								
Fe ³⁺ + 3e ⁻	=	Fe	- 0,13 - 0,06								
2H+ + 2e-		H₂(g)	0,00								
S + 2H ⁺ + 2e ⁻			+ 0,14								
Sn ⁴⁺ + 2e ⁻	+		+ 0,14								
Cu ²⁺ + e ⁻	+	Cu+	+ 0,16								
$SO_4^{2-} + 4H^+ + 2e^-$	` ⇌	$SO_2(g) + 2H_2O$	+ 0,17								
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34								
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H-	+ 0,40								
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons		+ 0,45								
Cu+ + e⁻			+ 0,52								
l ₂ + 2e⁻	\rightleftharpoons	2I ⁻	+ 0,54								
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68								
Fe ³⁺ + e ⁻		Fe ²⁺	+ 0,77								
NO ⁻ ₃ + 2H+ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80								
Ag+ + e⁻		Ag	+ 0,80								
Hg²+ + 2e⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85								
NO ₃ + 4H+ + 3e ⁻	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96								
$Br_2(\ell) + 2e^-$		2Br ⁻	+ 1,07								
Pt ²⁺ + 2 e ⁻	\rightleftharpoons		+ 1,20								
MnO ₂ + 4H ⁺ + 2e ⁻			+ 1,23								
$O_2(g) + 4H^+ + 4e^-$	=	2H₂O	+ 1,23								
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+ 1,33								
Cl ₂ (g) + 2e ⁻	\rightleftharpoons	2Cl-	+ 1,36								
MnO ₄ + 8H+ + 5e ⁻	\rightleftharpoons		+ 1,51								
H ₂ O ₂ + 2H ⁺ +2 e ⁻	\rightleftharpoons		+1,77								
Co ³⁺ + e ⁻		Co ²⁺	+ 1,81								
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87								

Increasing reducing ability/Toenemende reduserende vermoë

TECHNICAL SCIENCES		4.4
(Paper 2)	11102/22	14

TABLE 5: THE PERIODIC TABLE OF ELEMENTS/TABEL 5: DIE PERIODIEKE TABEL VAN ELEMENTE

	1 (l)		2 (II)		3		4	5	6	7	8	9	10	11	12	13 (III)	14 (IV)	15 (V)	16 (VI)	17 (VII)	18 (VIII)
		7	(,					KEY/SLI	EUTEL	Atomi <i>Atoon</i>	c numbe	er/				(,	(,	(•)	(*.)	(*,	
2,1	1 H									Aloon	1getai										² He
7	П 1										29										пе 4
	3		4					Electron	egativity <i>i</i>	/ → ರ್	_	(Comple	-1/			5	6	7	8	9	10
1,0	Li	1,5	Be						egatiwite gatiwite		63,5	—Symb Simb					2,5 C		3,5	6,4 F	Ne
	7	`	9						•			Onno	001			11	12	14	16	19	20
	11		12					,	Approxim	nato rola	T tivo ator	nie mase	-1			13	14	15	16	17	18
6,0	Na	1,2	Mg						Reproxiii Benadero							τ. Υ δ	Si کی	L,2 P	S,5	% Cf	Ar
	23		24													27	28	31	32	35,5	40
_	19		20		21		22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
9,0	K	1,0	Ca	1,3	Sc	1,5	Ti	² , V	ç Cr	તું Mu	_	⁻ ω Co	² Ni	-	ို့ Zn					[∞] , Br	Kr
	39		40		45		48	51	52	55	56	59	59	63,5	65	70	73	75	79	80	84
_	37		38	~ I	39	_	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
9,0	Rb	1,0	Sr	1,2	Y	4,	Zr	Nb	ω Mo	ੂੰ Tc	[₹] Ru		² ⁄ ₂ Pd	್ಲಿ Ag		Ç In				2,5	Xe
	86		88		89		91	92	96		101	103	106	108	112	115	119	122	128	127	131
_	55	6	56		57	ဖ	72	73 T -	74	75	76	77	78	79	80	81 © T 0	82 8	83 83	84 0 D -	85	86
0,7	Cs	6,0	Ba		La	1,6	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	~ T€	² Pb		% Po	5,5 At	Rn
	133 87		137 88		139 89		179	181	184	186	190	192	195	197	201	204	207	209			
7	Fr	6,0	oo Ra																		
0,7	Г	o,	226		Ac			58	59	60	61	62	63	64	65	66	67	68	69	70	71
			220					Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
								140	141	144		150	152	157	159	163	165	167	169	173	175
								90	91	92	93	94	95	96	97	98	99	100	101	102	103
								Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
								232		238	•										