

You have Downloaded, yet Another Great Resourcettoassistyyouwithyyous Study ©

Thank You for Supportin SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

NOVEMBER 2022

....................

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 23 pages.

QUESTION 1: MULTIPLE CHOICE QUESTIONS (GENERIC)

1.1	B -	(1)
1.2	B -	(1)
1.3	C -	(1)
1.4	C -	(1)
1.5	A -	(1)
1.6	B -	(1) [6]

QUESTION 2: SECURITY (GENERIC)

2.1 Essential Functions:

- Breathing -
- Heart rate / pulse State
- of consciousness -

(Any 2 x 1) (2)

2.2 **Safety glasses during grinding:**

- To prevent any injuries to the operator's eyes. To protect
- eyes from sparks and splashes. -
- To prevent blindness due to injuries. -

(Any 1 x 1) (1)

2.3 Type of screens:

- Fixed Screen -
- Automatic wiper / pusher Self-controlled /
- automatic screen Electronic motion
- sensor / air curtain Two-handed control
- mechanism -

(Any 2 x 1) (2)

2.4 Precautions before gas welding procedures can be performed:

- An operator is trained in how to use the equipment safely. The work
- area is effectively partitioned off. -
- The operator uses personal protective equipment (PBT) (PPE). -
- Ensure fire extinguisher equipment is on hand. -
- Ensure the equipment is in safe working condition. -
- Make sure that the gas equipment is set up correctly.
- - Ensure that the area is well ventilated Ensure that
- the work area is safe. -

(Any 3 x 1) (3)

2.5 TWO disadvantages of product layout:

- Lack of flexibility/adaptability. - Optimal use of

- equipment is not possible. - (2)

QUESTION 3: MATERIAL (GENERIC)

3.1 THREE characteristics:

- toughness -
- Hardness / Resistance to wear -
- Softness -
- shell hardening -
- Stretchability -
- Malleability -
- Elasticity -
- brittleness -
- Strength -

(Any 3 x 1) (3)

3.2 **Heat treatment processes:**

3.2.1 **Tempering:**

- It consists of heating the hardened steel to a temperature below its critical temperature (color chart).
 - Soak it at this temperature for some time. -
- Quench/cool it quickly in water, brine or oil. (4)

3.2.2 **Hardening:**

- -The steel is heated slightly above the higher critical temperature. -
- The steel is then soaked at this temperature for a period of time. -
- The steel is then quickly quenched in water, brine or oil. -

3.3 **Examples of shell hardening:**

- Bearing housings -
- bearing balls -
- lower needles -
- Crankshafts -
- gears -
- Camshafts -
- Cylinder liners -
- Hammerheads -
- Air Drill Bits -

(Any 2 x 1) (2)

3.4 **Why steel is cooled in still air, away from drafts:** This prevents the sudden cooling of a localized spot - which can cause warping/cracking. -

(2)

(3)

[14]

QUESTION 4: MULTIPLE CHOICE QUESTIONS (SPECIFIC)

4.1	C -	(1)
4.2	A -	(1)
4.3	B -	(1)
4.4	D -	(1)
4.5	C -	(1)
4.6	A -	(1)
4.7	B -	(1)
4.8	B -	(1)
4.9	C -	(1)
4.10	A -	(1)
4.11	B -	(1)
4.12	A -	(1)
4.13	D -	(1)
4.14	D -	(1) [14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Advantages of redemption method:

- Long tapers can be cut. -
- The automatic feed can be used. Good
- finish is obtained. -

(Any 2 x 1) (2)

5.2 Large diameter of taper:

$$\tan \frac{\theta}{2} = \frac{D - d}{2 - l}$$
D-Tan $\frac{\theta}{2}$

$$D = 82.56 \text{ mm}$$
 (4)

5.3 **Calculation of parallelspy:**

5.3.1 Width -
$$\frac{D}{4}$$
 - $\frac{65}{4}$ - $\frac{16.25}{4}$ mm- (2)

5.3.2 Thickness -
$$\frac{D}{6}$$
 - $\frac{65}{6}$

5.3.3 Length - 1.5- diameter of shaft

5.4 **Disadvantages of link milling:**

- The group milling puts more stress on the machine's spindle
- bearings. Due to more than one cutter being used, the milling machine works harder. -
- There may be more vibration. -
- Poor finish. -

(Any 1 x 1) (1)

5.5 **TWO milling processes:**

The milling of:

- swing -
- spigots -
- Slots -
- Bevel / ridge -
- Other angles -
- Grooves -
- Set devices(gout)- T
- connections(teas)-
- dovetail slots -
- Surface milling -
- Drilling -
- space work -
- Tapping -
- Climbing Work -
- milling work -

(Any 2 x 1) (2)

5.6 **Calculate X:**

X- Diameter of workpiece-Thickness of cutter 2

$$-\frac{48}{2}$$

-24mm

(3) **[18]**

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Gear calculations:**

6.1.1 **Module:**

Module -
$$\frac{SSD}{T}$$
 - $\frac{165}{110}$ -1.5

(2)

(2)

6.1.2 **Outer diameter:**

BD = SSD +2(m) BD = m(T + 2) =
$$165 + 2(1.5) - =$$
 OR = $1.5(110 + 2) - =$ $168 \text{ mm} -$

6.2 **Dovetail calculations:**

$$W = 120 + 2(DE)$$

 $m = W - [2(AC) + 2(R)]$ **OR** $m = W - 2(AC + R)$ **OR** $m = W - 2(AC) - 2(R)$

6.2.1 Maximum distance from dovetail. (W)

Calculate DE:

120 + 34.64

= 154.64 mm -

Tan=
$$\frac{DE}{A.D}$$

DE = tan-A.D

OR

$$= tan30^{\circ} - 30$$

$$= 17.32mm$$

W = 120 + 2(DE) -
$$= 120 + 2(17.32) - =$$

$$Tan = \frac{A.D}{DE}$$

$$DE = \frac{A.D}{Tan60_{oh}}$$

$$= \frac{30}{Tan60_{oh}}$$

$$= 17.32mm$$

(6)

6.2.2 Distance between rollers. (m)

Calculate AC:

$$Tan\theta$$
- $\frac{B.C}{AC}$
 $Tan = \frac{AC}{B.C}$
 $AC - \frac{B.C}{Tan\theta}$
 $AC = Tan-B.C$

OR

 $= Tan60_{oh}- 11$
 $= 19.05 mm$

-19.05mm

OR

OR

(6)

6.3 **Milling of spur gear:**

6.3.1 **Indexing:**

indexing-
$$\frac{40}{a} - \frac{40}{163}$$

$$- \frac{40}{A} - \frac{40}{160}$$

$$- \frac{1}{4} \cdot \frac{6}{6}$$

$$- \frac{6}{24}$$

Approximate indexing: 6 holes on a 24-hole circle. -

OR

7 holes on a 28 hole circle. - (3)

6.3.2 **Gears:**

$$\frac{Dr}{God} = (A - n) - \frac{40}{A}$$

$$= (160 - 163) - \frac{40}{160}$$

$$= 3 - \frac{40}{160}$$

$$=\frac{-120}{160}$$

$$=\frac{12}{16}-\frac{2}{2}$$
 OR $\frac{12}{16}-\frac{4}{4}$

$$=\frac{24}{32}$$
 OR $\frac{48}{64}$

(5)

6.4 TWO types of balancing methods:

- Static balancing (stationary balancing) -
- Dynamic balancing (running balancing) -

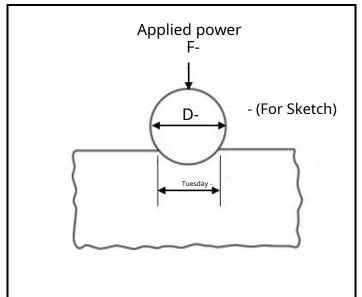
(2)

6.5 **TWO benefits of correct balancing:**

- Avoid vibrations. -
- Prevent poor finish / ensure better finish. Prevent
- wear on bearings / components. -
- Prevent accidents. -
- Improve production.- Promote
- accuracy. Prevent damage to
- workpiece. Prevent components
- from coming loose. -

(Any 2 x 1) (2)

[28]


QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 Function of thread micrometer:

The thread micrometer is specifically designed to measure the pitch diameter - of a thread. -

(2)

7.2 **Brinell labeled sketch:**

Tue - Immersion

D – Diameter of diver

(4)

7.3 Type of forces:

- Traction -
- thrust force -
- shear force -
- Torque -
- Gravitational Force -
- Normal power -
- Frictional Force -
- reaction force -

(Any 2 x 1) (2)

7.4 **ISO-Metric thread:**

7.4.1 A – Root/Root level -

B – Stitch diameter / Effective diameter / Average diameter -

C – Crown diameter / Large diameter / Outside diameter / Basic diameter -

7.4.2 **Stitch Diameter:**

 $Dp = Dn - (0.866 \times P)$

 $Dp = 12 - (0.866 \times 1.75) -$

Dp = 12 - 1.52

Dp = 10.48 mm - (2)

[13]

(3)

QUESTION 8: POWERS (SPECIFIC)

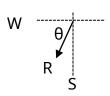
8.1 **Powers:**

8.1.1 **Horizontal component:**

8.1.2 **Vertical component:**

OR

Force	θ	8.1.1 $\Sigma HK/x = F\cos\theta$		8.1.2 $\sum VK/y = F \sin \theta$	
25N	90°	HK = 25cos90°	0N	UK = 25sin90°	25N -
40N	0°	HK = 40cos0°	40N -	UK = 40sin0°	0N
55N	290°	HK = 55cos290°	18.81N -	UK = 55sin290°	- 51.68N -
120N	210°	HK = 120cos210°	- 103.92N -	UK = 120sin210°	- 0N -
		Total	- 45.11N-		- 86.68N-


8.1.3 **Resultant:**

R -
$$\sqrt{-86.68}$$
 2--45,11- 2

R -
$$\sqrt{9549.24}$$

8.1.4 Angle and direction of resultant: Angle:

$$\tan \theta$$
- $\frac{UK}{HK}$
 θ - $\tan \theta$ - $\frac{--86.68}{--45,11}$
 θ - $\tan \theta$ - \tan

OR

$$tan = \frac{HC}{VC}$$

$$- = tan \begin{bmatrix} -1 - .45.11 - . \\ -.86.68 - \end{bmatrix}$$

$$-tan_{-1} - 0.52 - .$$

$$-27.49^{\circ} -$$

Direction:

R - 97.72N 62.5- South of West

OR

R - 97.72N 27.5- West of South - (3)

8.2 **EVL bar:**

8.2.1 **Distributed load:**

Uniform distributed load: 7 \times 12 m = 84 N - (1)

8.2.2 Reaction in strut A: Take moments to B:

937.5-462-0-14A

$$A - \frac{1399.5}{14}$$

8.2.3 Reaction in strut B: Take moments to A:

-B-14--- 75-1.5---84-8.5---55-14-

14B -112.5 - 714- 770

$$B - \frac{1596.5}{14} -$$

B -114.04N -

(5)

8.3.1 **Resistance Area:**

 σ - $\frac{F}{A}$

 $A - \frac{F}{\sigma}$ -

 $A - \frac{85 - 10_3}{36 - 10_6} -$

A - 2.36 - 10₋₃m₂

(3)

8.3.2 **Change in length:**

 $E - \frac{\sigma}{\varepsilon}$

 ε - $\frac{\sigma}{\mathsf{E}}$.

 ε - $\frac{36-10_6}{90-10_9}$ -

⊱-4-10₋₄

 ε - $\frac{\Delta L}{L}$

ΔL-*ε*-L

Δ*L*-4-10₋₄-0.12 Δ*L*-

4.8-10₋₅m ΔL--4.8-10₋₅-

-1000 *∆L*-0.048 mm -

(6)

[33]

Copyright reserved

Please turn the page

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 Failure to perform preventive maintenance:

- -Risk of injury or death. -
- -Financial loss due to damage from part failure. -
- Loss of precious production time. -
- Discharge of equipment. Damage
- to material or project. -

(3)

9.2 **Mechanical drives:**

- Belt Drives -
- gear drives -
- Chain Drives -
- Hydrostatic drives -
- Hydraulic drive Cable drive
- .
- Pneumatic drive -

(Any 3 x 1) (3)

9.3 Increase the strength of fiberglass: Polyester

resin / resin(Polyester resin / resin)-

(1)

9.4 Characteristics:

9.4.1 **Bakelite:**

- Sturdy -
- strong -
- Hard / abrasion resistant -
- Chemical resistance -
- thermoset -
- Water Resistant -
- electrical insulation -
- heat resistant -
- machinable -
- brittleness -

(Any 2 x 1) (2)

9.4.2 **Carbon fiber:**

- Good fatigue resistance Heat
- resistance -
- tough -
- strong -
- Semi-rigid -
- Good chemical resistance -
- Light weight -
- Water Resistant -
- flexible -

(Any 2 x 1) (2)

9.5 **Thermoplastic composition:**

- oil -
- Salt -
- coal -

(Any 1 x 1) (1)

9.6 Measures for performing preventive maintenance:

- inspection -
- Measurement -
- Cleaning -
- Lubrication -
- Adjustment of parts -
- Replacement of parts Tests
- -

(Any 3 x 1) (3)

9.7 Main types of plastic compounds:

- Thermoplastics -
- Thermosetting composition (2)

9.8 **Non-stick coating in frying pans:**

Teflon - (1)

[18]

18

QUESTION 10: SUTURE METHODS (SPECIFIC)

10.1 **Thread Terminology:**

10.2.1 **Rise:**

This is the distance - that the point (nut/bolt) on a thread will move/advance - with the thread axis - along, when turned through one complete revolution. -

(4)

10.2.2 Helix angle:

This is the angle that the thread makes with the line that is perpendicular $/ 90^{\circ}$ - to the axis of the thread. -

(2)

10.2 **Square thread:**

10.2.1 **Stab:**

Rise = Stitch - number of starts

Stitch =
$$\frac{\text{Rise}}{\text{number of starts}}$$

10.2.2 **Stitch Diameter:**

$$SD - BD - \frac{P}{2}$$

$$-90-\frac{21}{2}$$

10.2.3 Helix angle of wire:

$$tan = \frac{Rise}{-SD}$$

$$tan = \frac{42}{-79.50}$$

tan=0.168163713

-=tan₋₁0.168163713

$$= 9.55_{\text{oh}} \text{ or } 9_{\text{oh}} 33'$$
 (3)

10.2.4 Angle of intervention:

Angle of engagement = 90° - (helix angle + freewheel angle)

$$= 90^{\circ} - (9.55^{\circ} + 3^{\circ}) - =$$
 $77.45^{\circ} \text{ or } 77^{\circ}27'-$
(2)

10.2.5 **Drag angle:**

Drag angle = 90° + (helix angle – freewheel angle)

QUESTION 11: SYSTEMS AND CONTROL (PROPULSION SYSTEMS) (SPECIFIC)

11.1 Hydraulic calculations:

11.1.1 The fluid pressure in the hydraulic system in MPa:

A Ram--
$$\frac{\pi d_2}{4}$$

A -
$$\frac{\pi(0.25)_2}{4}$$
 -

A -0.049 m₂ OR 4.91-10₋₂m₂-

$$p - \frac{F}{A}$$

$$p - \frac{34000}{0.049}$$
 -

p -693877.55 Pa

11.1.2 **Diameter of the plunger:**

$$p - \frac{F}{A}$$

$$\frac{F_1}{A_1} - \frac{F_2}{A_2}$$

$$A - \frac{F}{p}$$

$$\frac{F_1}{-d_2} - \frac{F_2}{4}$$

A -
$$\frac{215}{693877.55}$$
 - A - 0.309852-10₋₃m₂-

$$\frac{215}{d_2}$$
 - $\frac{34000}{250_2}$.

d₂- 34000 = 215 - 250₂-

$$A - \frac{\pi d_2}{4}$$

$$d - \sqrt{\frac{4 - A}{\pi}} - \frac{1}{\pi}$$

$$d - \sqrt{\frac{4 - 0.309852 - 10.3^{-1}}{\pi}}$$

$$d = \sqrt{\frac{215 - 250_2}{34000}} -$$

d-0.019862422 m

d-19.86mm -

11.2 **Hydraulic filters:**

- Pressure Line Filter -
- Running Back Training Filter -

(5)

(2)

11.3 **Hydraulic symbols:**

OR

11.3.2 Directional Control Valve / Check Valve / One Way Valve - (1)

11.4 **Belt drive:**

11.4.1 The rotation frequency in r/sec:

$$A_{God} - \frac{A_{Dr} - D_{Dr} -}{D_{God}}$$

$$A_{God}$$
 $\frac{1330-0.15}{0.32}$

$$A_{God} = \frac{623.44 \text{ r/min}}{60}$$

11.4.2 **Power transferred in Watts:**

$$P - \frac{-T_{1}-T_{2}--DN}{60}$$

P - 470.03 Watts -

OR

$$P - \frac{-T_{\bar{1}}T_2--DN 60}{T_{\bar{1}}T_2--DN 60}$$

- - - - - - P --175 -130-*π*-0.15-1330

11.5 **Gear Drive:**

11.5.1 **Type of gear drive:**

Compound Gear System - (1)

11.5.2 Rotation frequency of input shaft Na:

 $\frac{A_{input}}{A_{output}} = \frac{Product of teeth on driven gears}{Product of teeth on drive gears}$

$$\frac{A_\text{A}}{A_\text{F}} = \frac{T_\text{B-}\,T_\text{D-}\,T_\text{F}}{T_\text{A-}\,T_\text{C-}\,T_\text{E}} \quad \ \text{-} \quad \label{eq:AA}$$

$$\frac{A_A}{625} = \frac{40-50-80-}{20-35-25-}$$

$$A_A = \frac{40-50-80-625}{20-35-25}$$

$$A_A = 5714.29 \text{ r/min}$$
 (4)

11.6 **Torque on lathe spindle:**

Torque-T-=Power-Radius

T -250-0.025

T - 6.25 Nm. - (3) [28]

TOTAL: 200