

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

KWAZULU-NATAL PROVINCE

EDUCATION PEPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS

.

MARKING GUIDELINE

COMMON TEST

MARCH 2023

..........

MARKS: 100

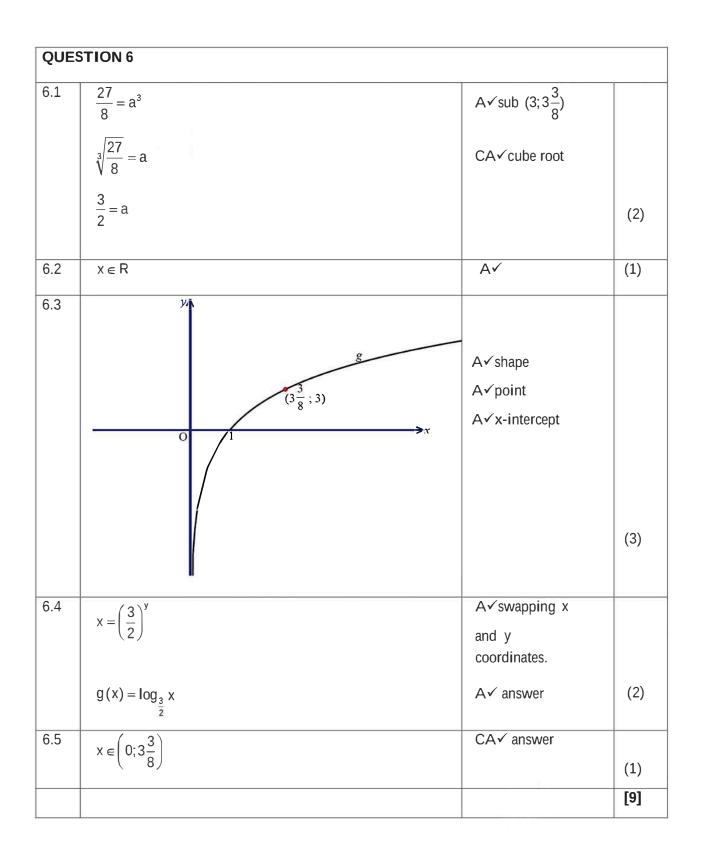
This memorandum consists of 12 pages.

Copyright Reserved

Please Turn Over

QUESTION 1			
1.1	2; 7; 14; 23; 34;		
	5;7;		
	2 ;		
	Fifth term is 34	A√ 34	(1)
1.2	$T_n = an^2 + bn + c$		
	2a = 2		
	a=1	A√ a=1	
	5 = 3a + b		
	5 = 3(1) + b		
	2=b	$CA \checkmark b = 2$	
	2 = 1 + 2 + c		
	c = -1	CA√ c = −1	
	$T_n = n^2 + 2n - 1$	CA√answer	(4)
1.3	First difference 5;7;9;11;		
	$T_n = 2n + 3$	A√2n+3	
	57 = 2n + 3	CA√equating to 57	
	54 = 2n		
	27 = n		
	Between T_{27} and T_{28}	$CA \checkmark T_{27}$ and T_{28}	(3)
			[8]

QUES	QUESTION 2			
2.1.1	10; a; 24; b; 38;			
	a - 10 = 24 - a	A√equating		
	2a = 34			
	a=17			
	38 - b = b - 24	A√equating	(2)	
	62 = 2b			
	31=b			
	OR	OR		
	$a = \frac{24 + 10}{2} = 17$	A√ answer		
	$b = \frac{24+38}{2} = 31$	A√ answer	(2)	
	2			
2.1.2	a=10			
	d = 7			
	$S_{n} = \frac{n}{2} \left[2a + (n-1)d \right]$			
	$S_{67} = \frac{67}{2} [2(10) + (67 - 1)7]$	A√substituting		
	S ₆₇ =16147	CA√answer	(2)	
	OR			
	$S_n = \frac{n}{2}(a+1)$			
	$S_{67} = \frac{67}{2} (10 + 472)$	A√substituting		
	S ₆₇ =16147	CA√answer		
			(2)	


2.1.3	10; 24; 38; 52; 66;		
	a=10	A√sequence	
	d =14		
	n = 34		
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$S_{34} = \frac{34}{2} [2(10) + (34 - 1)14]$		
	S ₃₄ = 8194	CA√sub into formu	
	OR	CA√answer	
		OR	
	$S_n = \frac{n}{2}(a+1)$		
	34(10, 470)	CA√ sub into form.	
	$S_{34} = \frac{34}{2} (10 + 472)$	A√ 472	
	S ₃₄ = 8194	CA√answer	(3)
2.2	<u> </u>		
	For: $\sum_{r=2}^{\infty} 3.2^{1-r}$ $a = \frac{3}{2}$ $r = \frac{1}{2}$		
	$S_{\infty} = \frac{a}{1-r} = \frac{1,5}{1-0,5} = 3$	$A\checkmark S_{\infty}=3$	
	For $\sum_{r=2}^{12} 3.2^{1-r}$ $a = \frac{3}{2}$ $r = \frac{1}{2}$ $n = 11$		
	$S_{11} = \frac{1,5(1-(0,5)^{11})}{1-0,5} = 2,999$	A√ S ₁₁ = 2,999	
	∴ 3 + 2,999 = 5,999	CA√answer	(3)
			[10]

QUEST	QUESTION 3				
3.1 3.1.1	r = x - 2	A✓	(1)		
3.1.2	-1 < x - 2 < 1. 1 < x < 3	A✓ CA√ answer	(2)		
3.2	$a + ar + ar^{2} + ar^{3} = 8400$ $ar^{3} = 27a$ r = 3 a + 3a + 9a + 27a = 8400 40a = 8400 a = 210 R210; R630; R1890; R5670	A ✓ forming equation A ✓ ar ³ = 27a CA ✓ value of r CA ✓ answer	(4)		
			[7]		

QUE	STION 4		
4.1	$\frac{2}{x} = x - 1$	A√ equating	
	$2 = x^2 - x$		
	$0 = x^2 - x - 2$		
	0 = (x-2)(x+1)	CA√factors	
	x = 2or -1	CA√ x values	
	y = 2 - 1 = 1	CA√ y values	(4)
	y = -1 - 1 = -2		
	(2;1);(-1;-2)		
4.2	(-1;-2) (-1;-2)	A√shape of f A√slope of g CA√label points of intersection	(3)
4.3	x < -1 or	CA√ x < −1	
	0 < x < 2	CA√0 <x CA√x<2</x 	(3)
4.4	Translation 3 units to the left and 4 units down.	A✓ 3 units left A✓ 4 units down	(2)
			[12]

QUES	QUESTION 5			
5.1	$k = \frac{1}{2}$	A✓	(1)	
5.2	$m = \frac{-3}{2}$	A✓	(1)	
5.3	$y = a(x - x_2)$ $y = a(x + \frac{3}{2})(x - 2)$	A√sub x-intercepts		
	$6 = a\left(0 + \frac{3}{2}\right)(0 - 2)$ 6 = -3a -2 = a	$A \checkmark sub(0; 6)$ $CA \checkmark a = -2$		
	$y = -2\left(x + \frac{3}{2}\right)(x - 2)$			
	$y = -2\left(x^2 - \frac{1}{2}x - 3\right)$ $y = -2x^2 + x + 6$			
	$y = -2\left(\frac{1}{4}\right)^{2} + \frac{1}{4} + 6 = \frac{49}{8}$ $n = \frac{49}{8}$	Av sub $x = \frac{1}{4}$		
	11-8	CA√ value for n	(5)	
			[7]	

-

QUESTION 7

7.1 7.1.1	$\tan 40^{\circ} = \frac{\sqrt{1-t^{2}}}{t}$	$A\checkmark$ diagram $A\checkmark \frac{\sqrt{1-t^2}}{t}$	(2)
7.1.2	cos ² 130°		
	$=(-\cos 50^{\circ})^{2}$	A✓ – cos 50°	
	$= \left(\frac{\sqrt{1-t^2}}{1}\right)^2$ $= 1-t^2$	$CA\checkmark \left(\frac{\sqrt{1-t^2}}{1}\right)^2$ $CA\checkmark 1-t^2$	(3)
7.1.3	cos 220º		
	$= \cos(180^{\circ} + 40^{\circ})$	$A\checkmark \cos(180^\circ + 40^\circ)$	
	$= -\cos 40^{\circ}$	$A \checkmark -\cos 40^{\circ}$	
	= -t	CA✓ –t	(3)
7.2	$\sin 237^{\circ} \cdot \cos 147^{\circ} - \frac{\cos 213^{\circ} \cdot \cos 303^{\circ}}{\tan 237^{\circ}}$ = (-sin 57°) \cdot (-cos 33°) - $\frac{(-\cos 33^{\circ})(\cos 57^{\circ})}{\tan 57^{\circ}}$ = sin 57° \cdot sin 57° + $\frac{\sin 57^{\circ} \cdot \cos 57^{\circ}}{\tan 57^{\circ}}$ = sin 57° \cdot sin 57° + sin 57° \cdot cos 57° \cdot $\frac{\cos 57^{\circ}}{\sin 57^{\circ}}$ = sin ² 57° + cos ² 57° = 1	$A \checkmark -\sin 57^{\circ}$ $A \checkmark -\cos 33^{\circ}$ $A \checkmark -\cos 57^{\circ}$ $A \checkmark \cos 57^{\circ}$ $A \checkmark \tan 57^{\circ}$ $A \checkmark \sin^{2} 57^{\circ} + \cos^{2} 57^{\circ}$ $A \checkmark a$	(7)
			[15]

QUESTION 8

8.1	$\tan x = \frac{1 - \cos 2x - \sin x}{1 - \cos 2x - \sin x}$		
	sin ⇒ – cosx		
	$RHS = \frac{1 - \frac{1}{2} x - \sin x}{2x - \sin x}$	A✓ 1-2 si rf x	
	$1 - (1 \frac{2 \sin^2 x}{2 \sin^2 x}) - \sin x$	A✓ 2 sin x cos x	
	$= \frac{1 - (1 - 2\sin^2 x) - \sin x}{2\sin x \cos x - \cos x}$	A√ simplifica t in	
	$= \frac{2 \sin^2 x - \sin x}{2 \sin^2 x - \sin x}$		
	cos x (2sinx – 1)	A \checkmark (2 si nx – 1) cos x	
	$= \frac{\sin x (2 \sin x - 1)}{(2 \sin x - 1)}$	A√ denomi natorand numerator	
	$\cos x \left(\frac{2\sin x - 1}{x - 1}\right)$ = tan x		
			(5)
	= LHS		(3)
8.2	Undefined if: $\sin 2x - \cos x = 0$	A√ = 0	
	$2 \sin x \cos x - \cos x = 0$	A√ 2 sin x cos x	
	$\cos x (2 \sin x - 1) = 0$	$A\checkmark \cos x = 0$	
	$\therefore \cos x = 0$ or $\sin x = \frac{1}{2}$	$A \checkmark \sin x = \frac{1}{2}$	
	:. $x = 90^{\circ} + k \cdot 360^{\circ} \text{ or } x = 30^{\circ} + k \cdot 360^{\circ}; k \in \mathbb{Z}$	$\gamma_1 \gamma_2 \gamma_2$	
	OR		
	$x = 270^{\circ} + k.360^{\circ}$ or $x = 30^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$		
	OR		
	$x = 270^{\circ} + k.360^{\circ}$ or $x = 150^{\circ} + k.360^{\circ}$; $k \in \mathbb{Z}$		
	: not defined if $x = 0^{\circ}$; 30° ; 90° ; 150° ; 180° ; 270°	A✓A✓A✓ (1 mark for any 2 correct values)	(7)
			[12]

QUESTION 9

9.1	a = 2	A√ a=2	
	$b = -45^{\circ}$	$A\checkmark$ b = -45°	(2)
9.2	Period : 3C	A√ 360°	(1)
9.3	C (-135° (-1)	A✓ -135° ✓ -1	(2)
9.4	D (0° ; 0,707)	A✓ 0,707	
	E (180°; -0,707)	A√ -0,707	(2)
9.5	$0^{\circ} \le x \le 165^{\circ}$; $x \ne 45^{\circ}$	$A\checkmark$ correct notation $A\checkmark$ correct end values	
		✓ x ≠ 45°	(3)
			[10]

QUESTION 10

10.1	In $\triangle RQS$: Area $\triangle RQS = \frac{1}{2}SQ$. RQ sin y	A✓ area rule	
	$=\frac{1}{2}a$ RQ sin y	A√ substitution	
	$\therefore RQ = \frac{2A}{a \sin y}$	A√ RQ	
	In $\triangle PQR$: tan x = $\frac{PQ}{QR}$	$A\checkmark \frac{PQ}{QR}$	
	\therefore PQ = QR tan x	A√ QR tan x	
	$= \frac{2A \cdot \tan x}{a \sin y}$		(5)
10.2	$PQ = \frac{2A \cdot \tan x}{a \sin y}$ $2A = \frac{PQ \ a \sin y}{a \sin y}$	A√ making A subject of formula	
	$2A = \frac{1}{\tan x}$ $A = \frac{PQ \text{ a. sin } y}{2 \tan x}$	A. substitu	
	$= \frac{77m . 89m \sin 115^{\circ}}{2 \tan 46,5^{\circ}}$	A√ substitu values	
	$= \frac{77m \cdot 89m (0,906)}{2 \cdot (1 + 2)}$		
	2 (1,054) = 2945,36 m ²	A√ 0,906 A√ 1,054	(5)
		CA√ answer	
			[10]