

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

OR TAMBO INLAND - MARCH 2023 ORTI DISTRICT MARCH 2023

QUESTION 1

- 1.1 B ✓✓ (2)
- 1.2 D ✓✓ (2)
- 1.3 D ✓✓ (2)
- 1.4 C ✓✓ (2)
- 1.5 C ✓✓ (2)
- 1.6 A ✓✓
- 1.7 A ✓✓ (2)
- 1.8 B ✓✓
 [14]

QUESTION 2

2.1

2.2

2.2.1 On 3 kg block

F_{net} = ma

$$T - W = ma$$

 $T - (3)(9.8) = (3)(2.2) \checkmark$
 $T = 36 N \checkmark$ (3)

2.2.2 On 5 kg block

F_{net} = ma
F_x -T - f_k = ma

$$\checkmark$$

80cos 30° - 36 - μ_k (5×9.8 + 80sin 30°) = 5(2.2) \checkmark
 $\mu_k = 0.25 \checkmark$ (5)

2.3

- 2.31 Increase ✓
 - According to $(f_k = \mu_k N)$, at a constant coefficient of kinetic friction, kinetic frictional force increases as <u>normal forces increases</u>. \checkmark (2)

Increase ✓

Normal force is directly proportional to kinetic frictional force. ✓

2.3.2 Remain the same. ✓
 Coefficient of kinetic friction depend on the nature of the surface only. ✓

[15]

QUESTION 3

3.1 An object which has been given an initial velocity and then it moves under the influence of gravitational force only. < (2)

3.2

3.2. **OPTION 1**

OPTION 2

1

upwards as positive

downwards as positive

$$V_1^2 = V_1^2 + 2a\Delta y$$

= (-10)² + 2(-9,8)(-13) ✓
= 18,84 m.s⁻¹ downwards ✓

$$= V_i^2 + 2a\Delta y \checkmark \qquad V_f^2 = V_i^2 + 2a\Delta y \checkmark$$

$$= (-10)^2 + 2(-9,8)(-13) \checkmark \qquad = (10)^2 + 2(9,8)(13) \checkmark$$

$$= 18,84 \text{ m.s}^{-1} \text{ downwards} \checkmark \qquad = 18,84 \text{ m.s}^{-1} \text{ downwards} \checkmark \qquad (3)$$

POSITIVE MARKING FROM QUESTION 3.2.1 3.2.

2

OPTION 1

OPTION 2

downwards as positive

F_{net}
$$\Delta t = \Delta p$$

F_{net} $\Delta t = m(v_t - v_t)$

F_{net}
$$\Delta t = \Delta p$$

F_{net} $\Delta t = m(v_t - v_i)$

F_{net}(0,3)=
$$200 \times 10^{-3}$$
(-24 - 18,84) \checkmark F_{net}(0,3)= 200×10^{-3} (24 - (-
F_{net} = -28,56 N \checkmark F_{net} = 28,56 N \checkmark

F_{net}(0,3)=
$$200 \times 10^{-3} (24 - (-18,84)) \checkmark$$
F_{net} = $28,56 \text{ N} \checkmark$

3.3 **OPTION 1**

OPTION 2

upwards as positive

downwards as positive

For ball A

$$\Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$\Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^{2/2}$$

$$\Delta y = 0 + \frac{1}{2}(-9.8)\Delta t^{2/}$$
 (1

$$\Delta y = 0 + \frac{1}{2}(-9.8)\Delta t^{2}$$
 (1) $-\Delta y = 0 + \frac{1}{2}\{+(9.8)\Delta t^{2}$ (1)

For ball B

$$\Delta y = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$y = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$v = V_i \Delta t + \frac{1}{2} a \Delta t^2$$

(5)

$$-[(30-2)-\Delta y] = -15\Delta t + \frac{1}{2}(-9.8)\Delta t^{2} \quad [(30-2)-\Delta y] = 15\Delta t + \frac{1}{2}(9.8)\Delta t^{2}$$
....(2)

$$[(30-2)-\Delta y] = 15\Delta t + ...(2)$$

$$t = 1,87 s$$
 \checkmark

$$t = 1,87 s \checkmark$$

3.4 **OPTION 1**

upwards as positive

shape: ✓

label both axis : ✓

OPTION 2

Downwards as positive

shape : ✓

label both axis: ✓

[16]

(2)

QUESTION 4

- 4.1 The total linear momentum of an isolated system remains constant. ✓✓ (2)
- 4.2 $\Sigma pi = \Sigma pf$

$$m_c V_{ic} + m_t V_{it} = m_c V_{fc} + m_t V_{ft}$$

$$(1500)(-20) + (2600)(16) \checkmark = (1500)(5,2) + (2600) v_{ft} \checkmark$$

 $v_{ft} = 1,46 \text{ m.s}^{-1} \text{ easwards. } \checkmark$ (4)

4.3 Inealstic ✓

POSITIVE MARKING FROM QUESTION 4.2

$$\Sigma \text{Ekbefore} = \frac{1}{2} \text{ mcV}^2_{\text{ic}} + \frac{1}{2} \text{ mtV}^2_{\text{it}} \checkmark$$

$$= \frac{1}{2} (1500)(20)^2 + \frac{1}{2} (2600)(16)^2 \checkmark$$

$$= 622800 \text{ J}$$

$$\Sigma E_{\text{kafter}} = \frac{1}{2} \text{mc} v^2_{\text{fc}} + \frac{1}{2} \text{mt} v^2_{\text{ft}}$$

$$= \frac{1}{2} (1500)(5,2)^2 + \frac{1}{2} (2600)(1,46)^2 \checkmark$$

$$= 23051 \text{ J}$$
(5)

 $\Sigma Ekbefore \neq \Sigma Ekafter \checkmark$

4.4 Car ✓

[13]

QUESTION 5

5.1 Organic molecules. ✓ (1)

5.2

5.3.2 Propanol
$$\checkmark\checkmark$$
 (2)

5.4
$$4 - \text{bromo}-2,2 - \text{dimethyl pentane}$$
 (3)

5.5 Primary alcohol. ✓

The carbon atom bonded to the hydroxyl (-OH) group is directly bonded to only one other carbon atom. ✓

(2)

5.6
$$2C_2H_6 + 7O_2 \checkmark$$
 4CO₂ + 6H₂O \checkmark \checkmark balancing. (3) [18]

QUESTION 6

6.1	The temperature at which the vapour pressure \checkmark of a substance equals the		
	atmos	pheric pressure. ✓	(2)
6.2			
	6.2.1	Number of carbons/ chain length. ✓	(1)
	6.2.2	What is the relationship between the number of carbon atoms/	(2)
		chain length and the boiling point? $\checkmark\checkmark$	
	6.2.3	As the number of carbon atoms / chain length increases, the boiling point also increases. \checkmark \checkmark	(2)
6.3	•	Alkanes have <u>London forces.</u> ✓	
	•	Alcohols have London forces Dipole-dipole forces and <u>hydrogen</u>	
		bonds. ✓	(4)
	•	The intermolecular forces of alcohols are stronger than those of	
		alkanes.✓	
	•	More energy needed to overcome the intermolecular forces of	
		alcohols. ✓	F4.47
			[11]

QUESTION 7

7.1

7.1.1 Elimination \checkmark (1)

7.1.2

Functional group: ✓

Functional group: ✓

Whole structure <u>correct:</u> ✓ Water ✓

Whole structure: ✓

(5)

7.2

7.2.2

7.3

7.3.2 1-bromopentane
$$\checkmark\checkmark$$
 (2)

7.4

[14]

TOTAL [100]