

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES

COMMON TEST

MARCH 2023

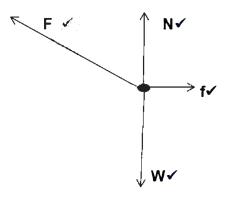
MARKING GUIDELINE

MARKS : 100

This Marking Guideline consists of 10 pages.

Copyright reserved Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS


- 1.1 D✓✓
- 1.2 C✓✓
- 1.3 C√√
- 1.4 B✓✓
- 1.5 A✓✓
- 1.6 B✓✓
- 1.7 C✓✓
- 1.8 A✓✓
- 1.9 B√√
- 1.10 A✓✓

[20]

QUESTION 2 (Start on a new page.)

2.1 **Normal force** is the force or component of a force which <u>a surface exerts on an object with which it is in contact</u>, and which is <u>perpendicular to the surface.</u> (2)

	Accept the following symbols
N	Normal Force/Normal/F _N
f	Static friction/ fs
W	Weight/Fw /Gravitational force/fg
F	Force applied/F _A

Notes

- Mark is awarded for label and arrow.
- Do not penalize for length of the arrows.
- Deduct 1 mark or any additional force.
- If force(s) do not make contact with body/dot:Max:3/4
- If arrows missing but labels are there: Max: 3/4

(4)

2.3
$$f_s^{\text{max}} = \mu_s N \checkmark$$

 $140 = 0, 3N \checkmark$
 $N = 466, 67 N \checkmark$

(3)

2.4 **POSITIVE MARKING FROM 2.3**

$$F_{x} = f_{s}^{\text{max}} = 140 N \checkmark$$

$$N = F_{g} - F_{y}$$

$$466, 67 = (60)(9,8) - F_{y} \checkmark$$

$$F_{y} = 121, 33N$$

$$\tan \theta = \frac{F_{y}}{F_{x}}$$

$$\tan \theta = \frac{121, 33}{140} \checkmark$$

$$\theta = 40.91^{\circ} \checkmark$$

(4)

QUESTION 3 (Start on a new page.)

3.1
$$0.5 \,\mathrm{m}\checkmark$$
 (1)

3.2.1 **OPTION 1/OPSIE 1**

Upwards positive

$$v_f = v_i + a\Delta t \checkmark$$

$$\underline{-6,27} = -2 + (-9,8)\Delta t \checkmark$$

$$\Delta t = 0,44 \text{ s} \checkmark$$

Downwards positive

$$v_f = v_i + a\Delta t \checkmark$$

 $6.27 \checkmark = 2 + (9.8)\Delta t \checkmark$
 $\Delta t = 0.44 \text{ s} \checkmark$

OPTION 2IOPSIE 2 Upwards positive

$$\Delta y = v_{\parallel} \Delta t + \frac{1}{2} a \Delta t^{2} \checkmark$$

$$-1.8 \checkmark = (-2) \Delta t + \frac{1}{2} (-9.8) \Delta t^{2} \checkmark$$

$$\Delta t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Delta t = \frac{-2 \pm \sqrt{(2)^2 - 4(4.9)(-1.8)}}{2(4.9)}$$
= 0.44 s \(\checkmark \)

Downwards positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$1.8 \checkmark = (2) \Delta t + \frac{1}{2} (9.8) \Delta t^2 \checkmark$$

$$\Delta t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\Delta t = \frac{-2 \pm \sqrt{(-2)^2 - 4(4.9)(-1.8)}}{2(4.9)}$$
= 0.44 s \(\forall

(4)

(4)

OPTION 3

$$\Delta y = \frac{(vi + vf)}{2} \Delta t \checkmark$$

$$1.8 \checkmark = \frac{(2 + 6.27)}{2} \Delta t \checkmark$$

$$\Delta t = 0.44 \text{ s}\checkmark$$
(4)

3.2.2 Upwards positive:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$

 $0^2 = v_i^2 + 2(-9.8)(0.9)\checkmark$
 $v_i = 4.2 \text{ m·s}^{-1} \checkmark \text{upwards} \checkmark$

Downwards positive:

$$v_f^2 = v_i^2 + 2a\Delta y \checkmark$$
 $0^2 = v_i^2 + 2(9,8)(0,9) \checkmark$
 $v_i = 4.2 \text{ m·s}^{-1} \checkmark \text{ upwards}\checkmark$ (4)

3.2.3 Upwards positive:

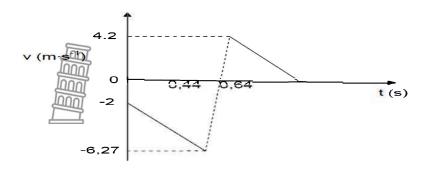
$$F_{\text{net}}\Delta t = m\Delta v$$
 $F_{\text{net}}(0,2) = (0,5)[(4,2 - (-6,27))]$
 $F_{\text{net}} = 26,175 \text{ N}$
 $F_{\text{net}} = F - Fg$
 $26,1755 = F - (0,5)(9,8)$
 $F = 31,075 \text{ N}$

Downwards positive:

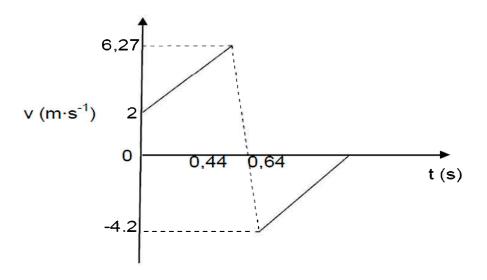
$$F_{\text{net}} \Delta t = m \Delta v \checkmark$$

$$\frac{F_{\text{net}} (0,2) = (0,5)[(-4,2 - (6,27)] \checkmark}{F_{\text{net}} = -26,175 \text{ N}}$$
 $\checkmark \text{ for either equation}$

$$F_{\text{net}} = 26,175 \text{ N}$$


$$F_{\text{net}} = Fg - F$$

$$\frac{-26,1755}{F} = \frac{(0,5)(9,8) - F}{(0,5)(9,8) - F} \checkmark$$


$$F = 31,075 \text{ N} \checkmark$$

Copyright reserved

3.5 Upwards positive:

Downwards positive:

Criteria for graph	Marks
2 straight discontinuous parallel lines, one above and one below the time axis	✓
First part of the graph starts at $v = 2 \text{ m·s}^{-1}$ at $t = 0 \text{ s}$ and extends until $v = 6,27 \text{ m·s}^{-1}$ at $t = 0,44 \text{ s}$.	✓
Second part of graph starts at $v = 4.2 \text{ m} \cdot \text{s}^{-1}$ at $t = 0.64 \text{ s}$ until $v = 0 \text{ m} \cdot \text{s}^{-1}$.	

(3) **[16]**

QUESTION 4 (Start on a new page.)

4.1 A system on which the <u>net external force is zero</u>. \checkmark (2)

4.2 Right as Positive:

$$\begin{split} & \Sigma p_i = \Sigma p_f \\ & \Delta p A = - \Delta p B \\ & m_A v_{i_A} + m_B v_{i_B} = m_A v_{f_A} + m_B v_{f_B} \end{split}$$
 Any one \checkmark
$$(0,25)(4) + (0,3)(-6) = (0,25)(-2) + (0,3)(v_{f_2}) \checkmark \checkmark$$

$$v_{f_2} = -1 \, \text{m.s}^{-1} \text{ to the left} \checkmark$$

Left as Positive:

$$\Sigma p_{i} = \Sigma p_{f}$$

$$\Delta pA = -\Delta pB$$

$$m_{A}v_{i_{A}} + m_{B}v_{i_{B}} = m_{A}v_{f_{A}} + m_{B}v_{f_{B}}$$

$$(0, 25)(-4) + (0, 3)(6) = (0, 25)(2) + (0, 3)(v_{f_{2}}) \checkmark \checkmark$$

$$v_{f_{2}} = 1 \text{ m.s}^{-1}$$

$$v_{f_{2}} = 1 \text{ m.s}^{-1} \text{ to the left} \checkmark$$

(4)

4.3
$$\Sigma E_{k \text{ (before)}} = \frac{1}{2} m_A v_{i_A}^2 + \frac{1}{2} m_B v_{i_B}^2 \checkmark$$
$$= \frac{1}{2} (0, 25)(4)^2 + \frac{1}{2} (0, 3)(-6)^2 \checkmark$$
$$= 7.4 \text{ J}$$

$$\Sigma E_{k(after)} = \frac{1}{2} m_A v_{f_A}^2 + \frac{1}{2} m_B v_{f_B}^2$$

$$= \frac{1}{2} (0, 25)(-2)^2 + \frac{1}{2} (0, 3)(-1)^2 \checkmark$$

$$= 0,65 \text{ J}$$

$$\Sigma E_{k_{\text{(before)}}} \neq \Sigma E_{k(\text{after)}} \checkmark$$

::INELASTIC√

NOTE: If starts with $\Sigma E_{k}_{(before)} = \Sigma E_{k}_{(after)}$ maximum 2/5

(5) **[11]**

QUESTION 5

5.1.1 $4.5 - \text{dimethyl} \checkmark \text{ hex } -2 - \checkmark \text{ene} \checkmark$

Marking criteria:

- Iden#y as alkene:√
- Hex 2 -: ✓
- All the substituents correct and correctly numbered: ✓

(3)

- 5.1.3 carboxyl \checkmark (1)
- $5.1.4 \quad C_nH_{2n} \checkmark$ (1)

5.2

Marking criteria:

- Correct functional group: $\frac{1}{2}$
- Whole structure correct: $\frac{2}{2}$

(2)

(2)

- 5.3.1 Organic molecules with the <u>same molecular formula</u> but <u>different positions of</u> the <u>side chains/substituents/functional groups</u> on the parent chain $\checkmark\checkmark$
- 5.3.2 but $-1 \text{ene } \checkmark$ (1)

5.3.3

Marking criteria:

- 3 carbons in parent chain with the double bond√
 - Methyl group as a substituent ✓

(2)

5.4 Unsaturated√

> There multiple bonds between C atoms in the hydrocarbon chain/triple bond between C atoms in the hydrocarbon chain. ✓

(2)

5.5 $2 C_6H_{14} + 19 O_2 \rightarrow 12 CO_2 + 14 H_2O$ Reactants ✓ Products ✓ Balancing ✓

(3) [18]

QUESTION 6

6.1 The temperature at which the vapour pressure equals atmospheric (external) pressure. $\checkmark\checkmark$ (2 or 0)

(2)

6.2 Compounds have the same functional group/belong to the same homologous series√

(1)

6.3 As the length of the carbon chain/molecular mass increases the boiling point increases for the same functional group/homologous series ✓ ✓

(2)

6.4 A√

(1)

Type of functional group/organic compound/homologous series. ✓ 6.5.1

(1)

- 6.5.2 B has 2 sites for hydrogen bonding ✓ and
 - therefore has stronger intermolecular forces√
 - That require more energy to overcome. ✓

- D has only 1 site for hydrogen bonding ✓ and
- therefore has weaker intermolecular forces√
- That require less energy to overcome. ✓

(3)[10]

NSC - MARKING GUIDELINE

QUESTION 7

7.1 hydrolysis \checkmark (1)

7.2.

$$H - C - C = C - C - H$$

Double bond between the second and third carbon atoms√
Whole structure correct√

(2)

(1)

100

- 7.3 Water(H₂O)/sulphuric acidH₂SO₄/phosphoric acidH₃PO₄/hydrogen chloride(HCl) ✓
- 7.4 Addition/hydration \checkmark (1)
- 7.5.1 Potassium hydroxide/KOH ✓ (1)
- 7.5.2 KOH in reaction I is dilute. ✓
 KOH in reaction II is concentrated. ✓
 (2)
- 7.6.1 $\underline{2 \text{bromo} \checkmark \text{butane} \checkmark}$ (2)
- 7.6.2 $\underline{\text{Butan}} \underline{2 \text{ol}} \checkmark \tag{2}$

[12]

TOTAL MARKS: