

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES:

CONTROLLED TEST

MARKS: 100

TIME: 2 hours

This question paper consists of 13 pages and 3 data sheets.

Copyright reserved Please turn over

Physical sciences Grade 12 controlled test INSTRUCTIONS AND INFORMATION

- 2. This question paper consists of ELEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in the question paper.
- 5. Leave ONE line between two sub questions, for example between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. Give brief motivations, discussions, et cetera where required.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Write only the letter (A-D) of the answer next to the question number (1.1-1.10) in the ANSWER BOOK.

1.1 A trolley moves on a flat, horizontal surface when a constant force, F, is applied to it.

Which **ONE** of the following physical quantities will **ALWAYS** remain constant while the trolley is moving?

- A momentum
- B acceleration
- C kinetic energy
- D gravitational potential energy

(2)

- 1.2 An object, moving vertically upwards, reaches a maximum height and falls back to the ground. Ignore air resistance. Which **ONE** of the following statements is **TRUE**? The object experiences an acceleration which
 - A is always downwards
 - B is first upwards and then downwards
 - C is first downwards and then upwards
 - D decreases first and then increases

(2)

- 1.3 A satellite experiences a gravitational force of magnitude **F** on the surface of the earth. The radius of the earth is **R**. The satellite now circles the earth at an unknown height <u>above</u> the surface of the earth and experiences a gravitational force of magnitude ¼ **F**. This unknown height is
 - **A R**
 - B 2 R
 - C 3 R
 - D 4 R

(2)

Physical sciences Grade 12 controlled test

1.4 A spacecraft, made up of two modules R and J of masses **3m** and **m** respectively, is travelling horizontally at a velocity **v** due east. An explosion causes the two modules to separate.

Module J continues in its original direction immediately after the explosion with a velocity of 3v. What will be the **magnitude and direction** of module R's velocity immediately after the explosion?

	Magnitude of velocity of R	Direction of R after explosion
Α	1 v	East
В	1 v	West
С	1/3 V	East
D	1/3 v	West

(2)

1.5 Consider the structural formula of an organic compound below.

Which ONE of the following is the correct IUPAC name of this compound?

- A Ethanone
- B Ethene.
- C Ethanol

- 1.6 Which ONE of the following reaction types can be used to prepare ETHENE from bromoethane?
 - A Hydrogenation
 - B Substitution
 - C Dehydrohalogrnation
 - D Addition (2)

1.7 Consider the structural formula of an organic compound below.

Which ONE of the following is the correct IUPAC name of this compound?

- A 2,2,4-trimethylpent-2-ene
- B 2,2,4-trimethylpent-3-ene
- C 2,4,4-trimethylpent-2-ene
- D 2,4,4-trimethylpent-3-ene

(2)

1.8 The following equation represents the cracking of a hydrocarbon at high temperature and pressure:

$$C_{11}H_{24} \rightarrow 2C_2H_4 + Y + C_4H_{10}$$

Which ONE of the following is the IUPAC name of product Y?

- A Prop-1-ene.
- B Propane.
- C Ethene.
- D Ethane. (2)

1.9 Consider the structural formula of a compound below.

Which ONE of the following pairs of reactants can be used to prepare this compound in the laboratory?

- A Propanoic acid and ethanol
- B Propanoic acid and methanol
- C Ethanoic acid and propan-1-ol
- D Methanoic acid and propan-1-ol

(2)

1.10 Which ONE of the following combinations correctly indicates the STRONGEST intermolecular forces found in ethanol, ethanoic acid and ethyl ethanoate respectively?

	ETHANOL	ETHANOIC ACID	ETHYL ETHANOATE	
Α	Hydrogersbonds	Dipole-dipole forces	Hydrogen bonds	
В	Hydro gen bonds	Hydrogen bonds	Dipole-dipole forces	
С	Hydrogen bonds	Hydrogen bonds	Hydrogen bonds	
D	Dipole-dipole forces	Hydrogen bonds	Dipole-dipole forces	
			(2	<u>')</u>]

[20]

QUESTION 2 (Begin on a new page.)

Two blocks of masses 5 kg and 3 kg respectively are connected by a light inextensible string that runs over a light frictionless pulley as shown in the diagram below. The 5 kg block experience a frictional force of 8 N and the coefficient of kinetic friction between the 3 kg block and the surface of the inclined plane is 0,15.

- 2.1 Define the term *frictional force.* (2)
- 2.2 Draw a labelled free-body diagram to indicate all the forces acting on the 3 kg block. (3)
- 2.3 Calculate the:
 - 2.3.1 Magnitude of the frictional force acting between the 3 kg block and the surface of the inclined plane (3)
 - 2.3.2 Magnitude of the tension T in the string (6) [14]

QUESTION 3 (Begin on a new page.)

Ball A is thrown vertically downwards from the top of a building, 80 m high, at a velocity of 12 m·s⁻¹. At the same instant a second identical ball **B** is thrown upwards at a velocity of 30 m·s⁻¹. Ball **A** and ball **B** pass each other after 2,135 s. Ignore all effects of air friction.

- 3.1 Give the direction of the acceleration of ball **B** while moving upwards. (1)
- 3.2 Calculate the velocity of ball **B** the moment it passes ball **A**. (3)

(6)

(3)

- 3.3 Calculate the distance between ball **A** and **B** 2,5 s after it was projected.
- 3.4 Sketch a position-time graph for the motion of ball **A** till it reaches the ground as well as for the motion of ball **B** until it passes ball **A**. Use the ground as zero position. Clearly indicate the time at which the balls pass each other. [13]

QUESTION 4 (Begin on a new page.)

A trolley, mass 5 kg, moves at 4 m·s⁻¹ east across a frictionless horizontal surface. A brick of mass 1,5 kg is dropped onto the trolley.

- 4.1 Define in words the Law of Conservation of Momentum. (2)
- 4.2 State the condition for an elastic collision. (1)
- 4.3 Calculate the change in momentum of the 5 kg trolley. (5)[8]

QUESTION 5

5.1 The structural formula of an unsaturated compound is given below.

- 5.1.1 Define the term *unsaturated* compound. (2)
- 5.1.2 Write down the IUPAC name of the compound. (2)
- 5.2 Butanoic acid is a FUNCTIONAL isomer of methyl propanoate.
 - 5.2.1 Write down the NAME of the functional group of butanoic acid. (2)
 - 5.2.2 Draw the STRUCTURAL formula of butanoic acid. (2)
 - 5.2.3 Draw the STRUCTURAL formula of methyl propanoate. (2)
 - 5.2.4 Explain why butanoic acid and methyl propanoate are described as FUNCTIONAL isomers. (2)
 - 5.2.5 Write down the IUPAC name of the alcohol used to prepare methyl propanoate. (2)
 - 5.2.6 Write down the IUPAC name of a POSITIONAL isomer of methyl propanoate. (2)

[18]

QUESTION 6 [START ON A NEW PAGE]

A learner conducts an investigation to determine the boiling points of different organic compounds. The data is recorded in the table below.

	FORMULA	MOLECUAR MASS (g·mol ⁻¹)	BOILING POINT (°C)
Α	CH₅(CH₂)₄OH	88	138
В	CH ₃ (CH ₂) ₃ CHO	86	103
С	CH ₃ (CH ₂) ₂ CO ₂ H	88	164
D	CH ₃ (CH ₂) ₄ CH ₃	86	69

6.1	Write down the IUPAC name for compound B .		
6.2	Is compound A considered as a PRIMARY, SECONDARY or TERTIARY alcohol? Give a reason for the answer.		
6.3		biling point of compound ${f B}$ is now compared with the boiling point of bund ${f D}$.	
	6.3.1	Is this a fair comparison? Write down YES or NO. Refer to the data in the table and give a reason for the answer.	(2)
	6.3.2	Refer to INTERMOLECULAR forces and explain why compound B has a higher boiling point than compound D .	(3)
6.4	Anothe	er learner investigates the vapour pressure of the compounds in the table.	
	6.4.1	Define the term vapour <i>pressure</i> .	(2)
	6.4.2	Which compound, A or C has the HIGHEST vapour pressure?	(2)

[13]

QUESTION 7

[START ON A NEW PAGE]

The flow diagram below represents the interconversion between the following three organic compounds: butan-2-ol, compound **X** and compound **Y**.

- 7.1 Reaction **B** represents the ELIMINATION of water from butan-2-ol to form compound **X**.
 - 7.1.1 Write down the NAME of a catalyst required in reaction **B**. (1)
 - 7.1.2 Name the TYPE of elimination reaction represented by reaction **B**. (1)
 - 7.1.3 Using STRUCTURAL FORMULAE, write down a balanced equation for reaction **B**. (4)
- 7.2 State the TWO reaction conditions for reaction **A**? (2)
- 7.3 Which GENERAL type of reaction takes place in reaction **C**? (2)
- 7.4 Write down the:
 - 7.4.1 IUPAC name of compound **Y**. (2)
 - 7.4.2 Reaction condition for reaction **D**. (2)

[14]

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 1 (PHYSICS)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 1 (FISIKA)

TABLE 1 YSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Acceleration due to gravity Swaartekragversnelling	g	9,8 m·s ⁻²
Universal gravitational constant Universele gravitasiekonstant	G	6,67 x 10 ⁻¹¹ N·m ² ·kg ⁻²
Speed of light in a vacuum Spoed van lig in 'n vakuum	С	3,0 x 10 ⁸ m·s ⁻¹
Planck's constant Planck se konstante	h	6,63 x 10 ⁻³⁴ J·s
Coulomb's constant Coulomb se konstante	k	9,0 x 10 ⁹ N·m ² ·C ⁻²
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Electron mass Elektronmassa	m _e	9,11 x 10 ⁻³¹ kg

TABLE 2: FORMULAE/TABEL 2: FORMULES

MOTION/BEWEGING

$v_f = v_i + a \Delta t$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \text{ or/of } \Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$v_f^2 = v_i^2 + 2a\Delta x \text{ or/of } v_f^2 = v_i^2 + 2a\Delta y$	$\Delta x = \left(\frac{v_i + v_f}{2}\right) \Delta t \text{ or/of } \Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t$

FORCE/KRAG

$F_{net} = ma$	p = mv	fκ = ⊔κN	
$F_{\text{net}}\Delta t = \Delta p$	w=mg	$f_S = \mu_S N$	
$\Delta p = mv_f - mv_i$	w = 1119	•	

WORK, ENERGY AND POWER/ARBEID, ENERGIE EN DRYWING

$W = F\Delta x \cos \theta$	U= mgh	or/of	$E_P = mgh$
$K = \frac{1}{2} \text{mv}^2$ or/of $E_k = \frac{1}{2} \text{mv}^2$	$W_{net} = \Delta K$	or/of	$W_{net} = \Delta E_k$
2 2	$\Delta K = K_f - K_i$	or/of	$\Delta E_k = E_{kf} - E_{ki}$
$W_{nc} = \Delta K + \Delta U \text{ or/of } W_{nc} = \Delta E_k + \Delta E_p$	$P = \frac{W}{\Delta t}$		
P=Fv			

WAVES, SOUND AND LIGHT/GOLWE, KLANK EN LIG

$v = f \lambda$	$T = \frac{1}{f}$	
$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s} f_{L} = \frac{v \pm v_{L}}{v \pm v_{b}} f_{b}$	$E = hf$ or/of $E = h\frac{c}{\lambda}$	
$E = W_o + E_k$ where/waar		
$E = hf$ and/en $W_0 = hf_0$ and/en $E_k = \frac{1}{2}mv^2$		

Copyright reserved Please turn over

Physical sciences Grade 12 controlled test

ELECTROSTATICS/ELEKTROSTATIKA

$F = \frac{kQ_1Q_2}{r^2}$	$E = \frac{kQ}{r^2}$
$E = \frac{V}{d}$	E = F
$V = \frac{W}{q}$	

ELECTRIC CIRCUITS/ELEKTRIESE STROOMBANE

$R = \frac{V}{I}$	emf (ϵ) = I(R + r) emk (ϵ) = I(R + r)
$R_s = R_1 + R_2 +$ $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} +$	$q = I \Delta t$
$W = Vq$ $W = VI \Delta t$	$P = \frac{W}{\Delta t}$
$W=I^2R\Delta t$	$P = \Lambda I$
$W = \frac{V^2 \Delta t}{R}$	$P = I^{2}R$ $P = \frac{V^{2}}{R}$

ALTERNATING CURRENT/WISSELSTROOM

$$I_{rms} = \frac{I_{max}}{\sqrt{2}} \qquad I_{wgk} = \frac{I_{maks}}{\sqrt{2}} \qquad P_{average} = V_{rms}I_{rms} \qquad P_{gemiddeld} = V_{wgk}I_{wgk} \qquad P_{average} = I_{rms}^2R \qquad P_{gemiddeld} = I_{wgk}^2R \qquad V_{rms} = \frac{V_{max}}{\sqrt{2}} \qquad V_{wgk} = \frac{V_{maks}}{\sqrt{2}} \qquad P_{average} = \frac{V_{rms}^2}{R} \qquad P_{gemiddeld} = \frac{V_{wgk}^2}{R} \qquad P_{gem$$