

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

FINAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

MARKING GUIDELINE

COMMON TEST

JUNE 2023

MARKS: 150

This memorandum consists of 20 pages.

QUEST	TION 1		
1.1.1	x(x-2) = 0	A√ factors	<u> </u>
1.1.1		$A \checkmark x = 0$	
	x = 0 or $x = 2$	$A \checkmark x = 0$ $A \checkmark x = 2$	(2)
			(3)
1.1.2	$5x^2 + 11x - 3 = 0$	A✓ standard form	
	$x = \frac{-b \pm \sqrt{b^2 - 4uc}}{2a}$		
	$x = \frac{-11 \pm \sqrt{(11)^2 - 4(5)(-3)}}{2(5)}$	CA ✓ substitution	
	x = 0,25 or -2,45	CA✓ answers	(3)
1.1.2	$x^2 - 2x - 8 \le \bullet$		
1.1.3		A✓ standard form	
	$\left(x-4\right)\left(x+2\right) \le 0$	CA✓ factors	
	-2 - 4 + 7	CA√critical values	
	$x \in [-2; 4]$ OR $-2 \le x \le 4$	A✓ correct notation	
	OR	OR	
	$x^2 - 2x - 8 \le 0$	A✓ standard form	
	$(x-4)(x+2) \le 0$	CA✓ factors	
	· · · · · · ·	CA√end values	
	"=[2:4] OP 2< "<4	A✓ correct	
	$x \in [-2;4] \text{ OR } -2 \le x \le 4$	notation	(4)
1.1.4	72022 (2 + 1)	A ✓ factors on the	
	$\sqrt{\frac{2^{2022}(2+1)}{2^{2022}} + x^2 - x} = x$	numerator	
	$\sqrt{3+x^2-x}=x$	CA√simplifying	1
	$\left(\sqrt{3+x^2-x}\right)^2 = x^2$	CA√squaring	I
	$3+x^2-x=x^2$		

	3-x=0		
	x=3	CA✓answer	(4)
1.2	-m-8 < 0	A✓	
	-8 < m	A✓ answer	
	OR	OR	
	-m-8 < 0	A✓	
	-m < 8		
	m > -8	A√answer	(2)
1.3.1	Perimeter = $2l + 2b$		
	24 = (2x + y) + y + (2x + y) + y	A✓	(1)
	24 = 4x + 4y		
1.3.2	Area = lb		
	32 = y(2x + y)	A✓	(1)
	$32 = y^2 + 2xy$		
1.3.3	24 = 4x + 4y(1)		
	6 = x + y		
	$x = 6 - y \tag{3}$	A ✓ equation 3	
	$32 = y^2 + 2xy \dots (2)$		
	$32 = 2y(6-y) + y^2$	CA✓substitution	
	$32 = 12y - 2y^2 + y^2$		
	$32 = 12y - y^2$		
	$y^2 - 12y + 32 = 0$		
	(y-4)(y-8)=0	CA√factors	
	y = 4 or 8	CA✓ y values	
	y = 4 only		
	x = 6 - 4 = 2	CA✓ x value	
	∴ length = 8m and width = 4m	CA✓ answer	(6)
			[24]
		<u> </u>	I

QUEST	TION 2		
2.1	$T_1 = -2(1)^2 + 40(1) + 103$	A√substitution	
	$T_1 = 141$	A√answer	(2)
2.2	141; 175 . 205; 231;		
	34 ; 30 ; 26 ;	A✓ first difference	
	-4 ; -4 ;	A✓ answer	
	The second difference is -4		
	OR	OR	
	2a = second difference	A✓	
	2(-2) = -4		
	The second difference is -4	A√ answer	(2)
2.3	$301 = -2n^2 + 40n + 103$	A ✓ equating	
	$2n^2 - 40n + 198 = 0$	A✓ standard form	
	$n^2 - 20n + 99 = 0$		
	(n-9)(n-11)=0		
	n = 9 or 11	CA✓ answers	(3)
		(conditional if answers are	
		natural numbers)	
2.4	The maximum value is at the turning point		
	At turning point $n = -\frac{b}{2a}$		
	$n = \frac{-40}{2(-2)} = 10$	A✓substitution	
	T_{10} has the maximum value.	CA√answer	
	OR	OR	
	$\frac{dT_n}{dn} = -4n + 40$	A√ derivative	I
	0 = -4n + 40		
	4n = 40		

	5 r	June 2023 Comm
$T_{10} \text{ has the maximum value.}$ $T_n = -2n^2 + 40n + 103 \text{ has a maxim}$	num value	answer
$T_9 = 301$ $T_{11} = 301$	$T_{11} =$	T ₉ = 301 and 301
T_{10} has the maximum value.		answer answer
Answer only, full marks		(2)
		[9]

3.1.1	21; 24	A√ A√	(2)
7.1.1	21, 24	A' A'	(2)
.1.2	T_{20} of original sequence is T_{10} of GP	A✓ Sub in formula for GP	
	In the GP: 3; 6; 12	TOI OF	
	$T_n = \alpha r^{n-1}$		
	$T_{10} = 3.2^9 = 512$	CA✓ 512	
	T_{21} of original sequence is T_{11} of AP	A ✓ Sub in formula for AP	
	3;9;15	151.11	
	$T_n = a + (n-1)d$		
	$T_{11} = 3 + (11 - 1)6$		
	$T_{11} = 63$	0.162	
	$T_{20} - T_{21} = 512 - 63 = 449$	CA ✓ 63 CA ✓ answer	(5)
		CA answer	
.2	$a = 8^{\circ}$		
	<i>l</i> = 52°		
	$S_n = 360^{\circ}$	A ✓ S _n = 360°	
	$S_n = \frac{n}{2} (a+l)$	$A \checkmark$ values of a and I	
	$360 = \frac{n}{2}(8+52)$	CA√substitution	
	360 = 30n	CAY substitution	
	12 = n	CA✓ answer(on condition, answer is natural)	(4)

3.3.1	$a = 5$ $r = \frac{3}{4}$ $n = 8$	A√ <i>a</i> = 5	
	$T_n = ar^{n-1}$		
	$T_8 = 5\left(\frac{3}{4}\right) 0,0067 \text{ kg}$	CA√ answer	(2)
3.3.2	$\sum_{n=1}^{\infty} 5 \left(\frac{3}{4}\right)^{n-1}$	A ✓ ∑	(2)
		$A\checkmark 5\left(\frac{3}{4}\right)^{n-1}$	(2)
3.3.3	$115 - \sum_{n=1}^{\infty} 5 \left(\frac{3}{4}\right)^{n-1} = 115 - \frac{5}{1 - \frac{3}{4}}$	$A \checkmark \frac{5}{1 - \frac{3}{4}}$	
		CA√subtracting	
	His weight will eventually reach = 95kg	CA√ answer	(3)
			[18]

QUESTION 4 (DO NOT MARK QUESTION 4.3 AND 4.4)		
$.1 \qquad x = 3$	A✓	(1)
$.2 x \in R x \neq 3$	A✓A✓	(2)
$-5 = \frac{a}{3-2} + p$	A√sub(2;-5)	
$-5 = a + p \dots (1)$	CA ✓ equation 1	
$-1 = \frac{a}{3-0} + p$	A ✓ sub (0; -1)	
$-3 = a + 3p \dots (2)$	CA√equation 2	
$2 = 2p \dots (2) - (1)$		
p = 1	CA√value of p	
-5 = a + 1		
a = -6	CA✓value of a	(6)
$x-intercept 0 = \frac{-6}{3-x} + 1$		
$\frac{6}{3-x} = 1$		
6 = 3 - x		
x = -3	CA✓ x-intercept	
y-intercept = $\frac{-6}{3-0} + 1 = -1$	CA✓ y-intercept	
* ↑	CA√ shape	
h		(3)
3 -1 3		
·		[12]

Please Turn Over

QUEST	TION 5		
5.1	y = -2(0-3)(0+1)	A \checkmark substitute $x = 0$	(1)
	y = -2(-3)(1)		
	y = 6		
	E(0;6)		
5.2	$y = -2(x^2 - 2x - 3)$		
	$y = -2x^2 + 4x + 6$	A√ equation	
	Turning point $x = -\frac{b}{2a}$		
	$x = \frac{-4}{2(-2)} = 1$	CA✓substitution	
		CA✓ x value	
	$y = -2(1)^2 + 4(1) + 6 = 8$	CA✓ y value	
	D(1;8)		
	OR	OR	
	$y = -2[(x^2 - 2x + 1) - 3 - 1]$	A√completing the square	
	$y = -2(x-1)^2 + 8$	CA√simplifying	
	D(1; 8)	CA✓ x value	
		CA✓ y value	
	OR	OR	
	y = -2(x-3)(x+1)		
	x-intercepts = 3 or -1	A✓ x intercepts	
	midpoint is $x = 1$	CA✓ midpoint value	
	y = -2(1-3)(1+1)	CA✓ x value	
	y = 8	CA✓ y value	
	D(1;8)		(4)

5.3	F(-2;-8)	A√ x coordinate	
		A✓ y coordinate	(2)
5.4	0 = -2(x-3)(x+1)		
	x = 3 or -1		
	At Q $x = 3$	A✓	(1)
	Q(3;0)		(-)
5.5	y = mx + c		
	y = mx + 6	$A\checkmark y = mx + 6$	
	0 = m(3) + 6	CA✓substitute	
	-6=3m	(3;0)	
	-2 = m		
	y = -2x + 6	CA√answer	
	OR	OR	
	$m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \frac{0 - 6}{3 - 0} = \frac{-6}{3} = -2$ $c = 6$ $y = -2x + 6$	CA✓substitute in gradient formula CA✓ m = -2 CA✓answer	(3)
5.6			
5.6	$SP = -2x^2 + 4x - 6 - (-2x + 6)$	CA√expression for SP	
	$SP = -2x^2 + 6x$		
	Maximum SP is at turning point		
	$x = -\frac{b}{2a}$		
	$x = -\frac{6}{2(-2)}$	CA✓ substitutio	
	$x = \frac{3}{2}$	CA✓ answer	
	OR		
		OR	

	r		
	$SP = -2x^2 + 4x - 6 - (-2x + 6)$	CA√expression for SP	
	$SP = -2x^2 + 6x$	CA✓ derivative	
	$\frac{dSP}{dx} = -4x + 6$		
	0 = -4x + 6		
	4x = 6		
	$x = \frac{3}{2}$	CA√answer	
		OR	
	OR		
	$SP = -2x^2 + 4x - 6 - (-2x + 6)$	CA√expression for SP	
	$SP = -2x^2 + 6x$		
	$SP = -2(x^2 - 3x)$		
	$SP = -2\left[\left(x^2 - 3x + \left(\frac{-3}{2}\right)^2\right) - \left(\frac{-3}{2}\right)^2\right]$	CA√ completing the square	
	$SP = -2\left[\left(x - \frac{3}{2}\right)^2 - \frac{9}{4}\right]$		
	$SP = -2\left(x - \frac{3}{2}\right)^2 + \frac{9}{2}$		
	Maximum SP is at $x = \frac{3}{2}$	CA✓answer	(3)
5.7	k < 6	A✓	(1)
			[15]

QUI	ESTION 6		
6.1	$3 = a(1)^2$	A✓substitution	
	a = 3	CA✓ answer	(2)
6.2	$x = 3y^2$	CA√swapping x and y	
	$\frac{x}{3} = y^2$		
	$y = \pm \sqrt{\frac{x}{3}}$ $y = \sqrt{\frac{x}{3}}$		
	$y = \sqrt{\frac{x}{3}}$	CA✓ answer(+ve)	(2)
6.3	y/\	A ✓ shape	
	h ¹	A √ point	(2)
	(3;1)		
	→ x		
6.4	Yes, any vertical line cuts the graph at only one place.	A✓ answer	
	OR	CA√explanation	(2)
	Yes, it passes the vertical line test		
	OR		
	Yes, it is a one to one function		
			[8]

QUES	TION 7		
7.1		A√ formula	
	$1 + \frac{r}{100} =$	A✓ substitution	
	$r = 100 \left[\left(1 + \frac{7.12}{400} \right)^4 - 1 \right]$		
	r = 7.31%	CA✓ answer	(3)
7.2.1	$A = P(1-i)^n$		
	$A = 1 \ 2500 \ 000 \left(1 - \frac{11}{100}\right)^3$	A✓ substitution into correct formula	
	A = R881 211,25	CA ✓ answer	(2)
7.2.2	$A = P(1+i)^{n}$ $A = 1 250 000 \left(1 + \frac{7.5}{100}\right)^{3}$	A✓ substitution into correct formula	
	A = R1 552 871,10	CA✓ answer	(2)
7.2.3	R1 552 871,10 – R881 211,25	CA✓ subtraction	
	= R671 659,85	CA✓ answer	(2)
7.2.4 a).	4 deposits	A ✓ answer	(1)

7.2.4 b).	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	$671\ 659.85 = \left[\left(1 + \frac{9.6}{1200} \right)^{36} + x \left(1 + \frac{9.6}{1200} \right)^{24} + \right]$	$A \checkmark x \left(1 + \frac{9.6}{1200}\right)^{36}$ $A \checkmark x \left(1 + \frac{9.6}{1200}\right)^{24}$	
	$\left(1+\frac{9.6}{1200}\right)^{12}+x$	$A \checkmark x \left(1 + \frac{9.6}{1200}\right)^{24}$	
	$671659,85 = x \left[\left(1 + \frac{9.6}{1200} \right)^{36} + \left(1 + \frac{9.6}{1200} \right)^{24} + \left(1 + \frac{9.6}{1200} \right)^{12} + 1 \right]$	$A \checkmark x \left(1 + \frac{9.6}{1200}\right)^{12} + x$	
	X = R144650,97	CA√setting up the equation	
		CA✓ answer	(5)
		<u> </u>	[15]

OUESTION 8

QUES	TION 8		
8.1.1	$f(x) = 3x^2 + 2x$		
	$f(x+h) = 3(x+h)^2 2(x+h) = 3x^2 + 6xh + 3h^2 + 2x + 2h$	A√calculating	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	f(x+h)	
	$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 + 2x + 2h - 3x^2 - 2x}{h}$	CA√substitution into the formula	
	$f'(x) = \lim_{h \to 0} \frac{6xh + 3h^2 + 2h}{h}$	CA✓simplification	
	$f'(x) = \lim_{h \to 0} \frac{h(6x + 3h + 2)}{h}$	CA√factorising	
	$f'(x) = \lim_{h \to 0} (6x + 3h + 2)$		(5)
	f'(x) = 6x + 2	CA√answer	
8.1.2	Average gradient = $6x + 3h + 2$ x = -1	CA√formula for average gradient	
	h = 2 - (-1) = 3	A✓ value for h	
	Ave grad = $6(-1) + 3(3) + 2 = 5$	CA✓ answer	
	OR	OR	
	At $x = -1$ $y = 3(-1)^2 + 2(-1) = 1$	A√y values	
	At $x = 2$ $y = 3(2)^2 + 2(2) = 16$		
	Ave grad = $\frac{y_2 - y_1}{x_2 - x_1}$		
	Ave grad = $\frac{16-1}{2-(-1)} = \frac{15}{3} = 5$	CA√substituting in gradient formula	
		CA√answer	(3)
		<u></u>	

8.2.1	$g(x) = -7x^{2} + 22x - 3$ $g'(x) = -14x + 22$	A√ CA√answer	(2)
8.2.2	$y = 5x + \frac{1}{2} - \frac{6}{\sqrt{x}}$ $y = 5x + \frac{1}{2} - 6x^{\frac{1}{2}}$ $\frac{dy}{dx} = 5 + 3x^{-\frac{3}{2}}$	A \checkmark $CA \checkmark 2x^{-\frac{1}{2}}$ $CA \checkmark CA \checkmark (two terms)$	(4)
			[14]

QUES	STION 9		
9.1	y = 18	A✓	(1)
9.2	0 = (x-3)(x-3)(x+2)	A√equating to zero	
	x = 3 or -2	A √ A √	(3)
9.3	Turning points: $f'(x) = 3x^2 - 8x - 3$	A√ derivative	
	$0 = 3x^2 - 8x - 3$	CA ✓ equating to	
	0 = (3x+1)(x-3)	zero	
	$x = 3 \text{ or } -\frac{1}{3}$	CA√x values	
	y = (3-3)(3-3)(3+2) = 0 (3;0)		
	$y = \left(-\frac{1}{3} - 3\right)\left(-\frac{1}{3} - 3\right)\left(-\frac{1}{3} + 2\right) = \frac{500}{27} = 18,52 \left(-\frac{1}{3}; \frac{500}{27}\right)$	CA ✓ y values	
	OR	OR	
	Turning points: $f'(x) = 3x^2 - 8x - 3$	A√ derivative	
	$0 = 3x^2 - 8x - 3$	CA√equating to	
	0 = (3x+1)(x-3)	zero	
	$x = 3 \text{ or } -\frac{1}{3}$	CA√x values	
	$y = (3)^3 - 4(3)^2 - 3(3) + 18 = 0$ (3;0)		
	$y = \left(-\frac{1}{3}\right)^3 - 4\left(-\frac{1}{3}\right)^2 - 3\left(-\frac{1}{3}\right) + 18 = \frac{500}{27} \left(-\frac{1}{3}; \frac{500}{27}\right)$	CA√y values	(4)

9.4	ν_Λ	A√shape	
	$(-\frac{1}{3}:\frac{500}{27})$	CA√turning points labelled	
	(-2;0) O (3:0)	CA√intercepts labelled	(3)
9.5	$f'(x) = 3x^2 - 8x - 3$		
7.5	$-3 = 3x^2 - 8x - 3$	CA \checkmark equating $f^{\cdot}(x)$	
	$0 = 3x^2 - 8x$	to -3	
	0 = x(3x - 8)		
	$x = 0 \text{ or } \frac{8}{3}$	CA√factors	
	$\therefore x = 0$		
	At $x = 0$ $y = 18$ and $m = -3$	$CA \checkmark x = 0$	
	y = -3x + 18	CA√answer	(4)
			[15]

QUESTION 10			
10.1	No people were infected	A✓	(1)
		Av	(1)
10.2	$N'(t) = -\frac{3}{2}t^2 + 6$	A√substitution	
	$N'(2) = -\frac{3}{2}(2)^2 + 6(2)$	into the derivative	
	= 6000 people/month	CA√answer	(2)
10.3	$N'(t) = -\frac{3}{2}t^2 + 6t$		
	$0 = -\frac{3}{2}t^2 + 6t$	CA√ equating to zero	
	$0 = t^2 - 12t$		
	0 = t(t-4)	CA√factors	
	$t = 0 \text{ or } 4$ $\therefore 4 \text{ months}$	CA√both values of t	
		CA√answer	(4)
10.4	Virus reached the peak after 4 months		
	$N(4) = -\frac{1}{2}(4)^3 + 3(4)^2$	CA√ substitution	
	∴ 16 000 people	CA√answer	(2)
			[9]

QUEST	TON 11 (DO NOT MARK 11.1.1)		
11.1.1		A√No	
	For mutually exclusive events $P(A \text{ and } B) = 0$	A√explanation	(2)
11.1.2	P(Grade 11 and Samsung) = $\frac{d}{150}$	A✓	
	$P(Grade 11) \times P(Samsung) = \frac{50}{150} \times \frac{90}{150}$	A✓	
	P(Grade 11 and Samsung) = P(Grade 11)×P(Samsung)		
	$\therefore \frac{d}{150} = \frac{50}{150} \times \frac{90}{150}$	A	
	$d = \frac{50}{150} \times \frac{90}{150} \times 150 = 30$	CA√answer	(4)
11.2.1	8	A✓	(1)
11.2.1		N'	(1)
11.2.2	0.7 C C C C 0.8 C NC C NC 0.8 C NC C 0.8 C NC C 0.8 C NC C		
	$P(CC \text{ or } NCC) = 0.8 \times 0.7 + 0.2 \times 0.8$	A✓ 0,8×0,7	
		A✓ 0,2×0,8	
		A✓addition	
	= 0,72	CA ✓ answer	(4)
			[11]
		TOTAL MARI	KS: 150

MARK THE PAPER OUT OF 137 THEN CONVERT TO 150