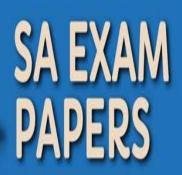


You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



education MPUMALANGA PROVINCE REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

JUNE 2023

MARKING GUIDELINE

MARKS: 150 marks

This question paper consists of 13 pages and an information sheet

NOTE:

L

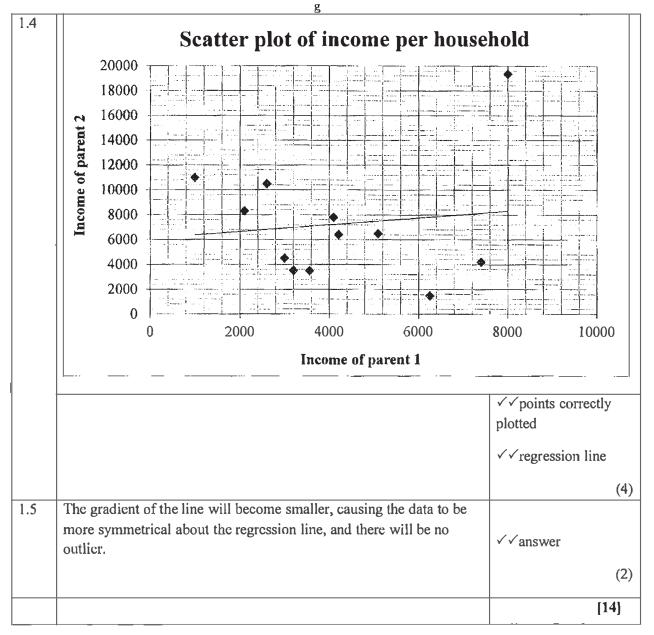
- 1. If a candidate answered a question TWICE, mark only the FIRST attempt.
- 2. If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- 3. Consistent accuracy applies to ALL aspects of the marking memorandum.
- 4. Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- 5. As 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- 6. As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, sien die deurgehaalde antwoord na.
- 7. Volgehoue akkuraatheid is op ALLE aspekte van die memorandum van toepassing.
- 8. Dit is onaanvaarbaar om waardes/antwoorde te veronderstel om 'n probleem op te los.
- 9. Write neatly and legibly.

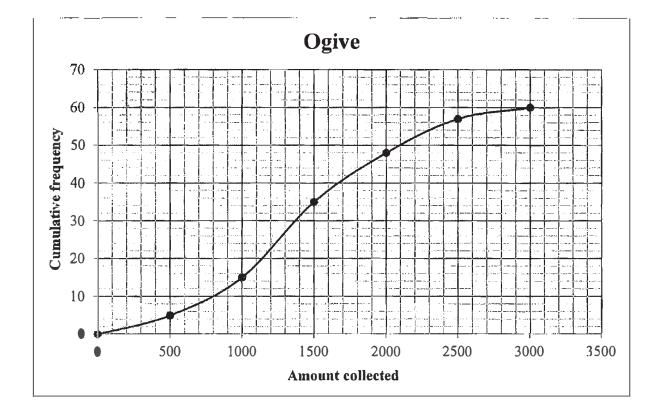
QUESTION/VRAAG1

1.1	$\frac{87110}{12} = R\ 7259,17$	✓R 7259,17 (2)
1.2	SD = R4579,26	✓SD
	Above ONE standard deviation = mean+1SD	√boundary
	= R7259,17 + R4579,26	
	= R11838,43	
	Only ONE household	√answer
		(3)
1.3	y = a + bx	✓ <i>a</i> = 6102, 1123, 47
	<i>a</i> = 6102,11	
	b = 0,27	✓ <i>b</i> = 0,27 92,85
	y = 6102, 11 + 0, 27x	$\checkmark y = 6102, 11 + 0, 27x$
		(3)



QUESTION/VRAAG 2

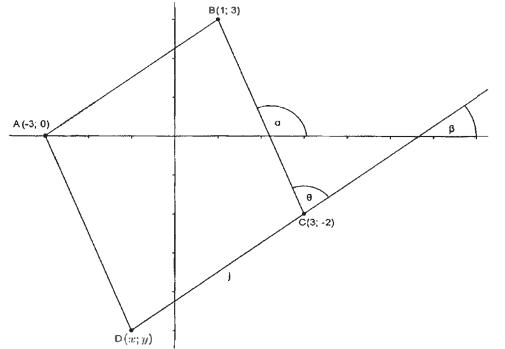
· .



2.1	$1000 < x \le 1500$	✓ answer
		(1)
2.2	60 - 15 = 45 parents	✓15 and 60
		√answer
		(3)
2.2	a = lower quartile = 1000	√method
		l √Q1
	b = median = 1350	✓Q2
	c = upper quartile = 1850	✓ Q3
		(4)
		[7]

Copyright reserved

•



3.1	D(-1; -5)	\checkmark	(2)
3.2	$m_{AB} = \frac{3-0}{1-(-3)} = \frac{3}{4}$	m _{AB} ✓	
	$m_{BC} = \frac{3 - (-2)}{1 - 3} = \frac{5}{-2}$	m_{BC} \checkmark	
	$\frac{3}{4} \times \frac{5}{-2} = \frac{15}{-8} \neq -1$	≠ -1 ✓	
	\therefore AB not perpendicular to BC, \therefore ABCD is not a rectangle	Not rectangl	e√(4)
3.3	$M_{AB} = \left(\frac{-3+1}{2}; \frac{0+3}{2}\right) = \left(-1; \frac{3}{2}\right)$	V V	(2)
3.4	$m_{AB} = \frac{3}{4}, \therefore m_{\perp} = -\frac{4}{3}$	<i>m</i> ⊥ √	
	$y - \frac{3}{2} = -\frac{4}{3}(x - (-1))$	Subst 🗸	
	$y = -\frac{4}{3}x - \frac{4}{3} + \frac{3}{2}$ $= -\frac{4}{3}x + \frac{1}{6}$	1	(3)
3.5	$tan\alpha = -\frac{5}{2}$.
	$\alpha = -68,198 \dots^{\circ} + 180^{\circ} = 111,80^{\circ}$	V	
	$tan\beta = \frac{3}{4}$ (AB // CD)		
<u>.</u>	$\beta = 36,87^{\circ}$		

Copyright reserved

Please turn over

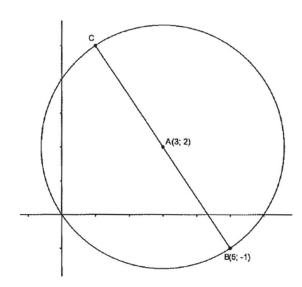
	e	
	$\therefore \theta = 111,80^{\circ} - 36,87^{\circ} = 74,93^{\circ} (ext \angle of \Delta) B\hat{C}D = 105,07^{\circ} (angles on straight line)$	✓ ✓ (5)
3.6	$BC^{2} = (1-3)^{2} + (3-(-2))^{2}$ = 4 + 25 = 29	Subst in formula 🗸
	$BC = \sqrt{29}$	BC ✓
	$CD^{2} = (3 - (-1))^{2} + (-2 - (-5))^{2}$ = 16 + 9 = 25 CD = 5	CD ✓
	Area $\triangle BCD = \frac{1}{2}BC.CD.\sin B\hat{C}D.$ = $\frac{1}{2}.\sqrt{29}.5.\sin 105,07^{\circ}$ = 13 units ²	Subst in sine form \checkmark (5)
		[21]

• •

QUESTION 4

• . .

4.1



4.1.1	$r^2 = (5-3)^2 + (-1-2)^2$	V	
	= 4 + 9 = 13	▼	
	$\therefore (x-3)^2 + (y-2)^2 = 13$	\checkmark	(4)
4.1.2	C = (1; 5) (symmetry)	$\checkmark\checkmark$	(2)
4.1.3	$m_{AC} = \frac{5-2}{1-2} = \frac{3}{-2}$	\checkmark	
	$m_{AC} - \frac{1}{1-3} - \frac{1}{-2}$		
	2		
	$m_{tangent} = \frac{2}{3}$	\checkmark	
	$y-5=\frac{2}{3}(x-1)$	\checkmark	
	C		
	$y = \frac{2}{3}x - \frac{2}{3} + 5$		
	$=x+4\frac{1}{2}$	\checkmark	(4)
	3		
<u>4.1.4</u>	$r = \sqrt{13}$ and horizontal lines $\sqrt{13}$ from centre.		
	$\therefore y = 2 + \sqrt{13}$ and	\checkmark	
	-	\checkmark	(2)
	$y = 2 - \sqrt{13}$		
		1	
4.1.5	$(x-3)^2 + (y-2)^2 = (4+\sqrt{13})^2$	• centre	
	Or $(x-3)^2 + (y-2)^2 = 57,84$	radius	(2)
		i	
4.2	$x^2 + y^2 + 4y + 3 = 0$		
	$x^2 + y^2 + 4y + 2^2 = -3 + 2^2$		
	$x^2 + (y+2)^2 = 1$	\checkmark	
L		-L-	

Copyright reserved

Please turn over

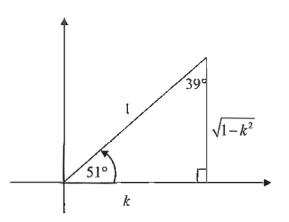
Centres: A: (3; 0) and B: (0; -2) Distance between centres AB = $\sqrt{(3-0)^2 + (2-0)^2} = \sqrt{13}$ = 3,61	✓ ✓
Radii = 1 and 2 Sum of radii = 3	✓
Sum of radii < Distance between centres ∴ Circles do not intersect	✓ ✓ (6)
	[20]

g

· ·

.

QUESTION 5 5.1 $\cos 51^\circ = \frac{k}{1}$



5.1.1	$y^2 = 1^2 - k^2$	✓ Pythagoras
	$y = \sqrt{1 - k^2}$	
	$\tan 219^\circ = \tan (180^\circ + 39^\circ)$	
	$= \tan 39^{\circ}$	√— tan 39°
	$=\frac{k}{\sqrt{1-k^2}}$	\checkmark answer (3)
5.1.2	$\sin(-411^\circ) = \sin(-411^\circ + 360^\circ)$	
	$=\sin(-51^{\circ})$	
	$=-\sin 51^{\circ}$	✓ reduction
	$=-\frac{\sqrt{1-k^2}}{1-k^2}$	✓ answer (2)
	- 1	
5.1.3	$\cos 9^\circ = \cos \left(60^\circ - 51^\circ \right)$	✓ compound angles
	$= \cos 60^{\circ} \cos 51^{\circ} + \sin 60^{\circ} \sin 51^{\circ}$	✓expansion
	$= \left(\frac{1}{2}\right)(k) + \left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{1-k^2}}{1}\right)$	✓ substitution✓ substitution
	$=\frac{1k}{2} + \frac{\sqrt{3(1-k^2)}}{2}$	
		(4)

5.2
$$\frac{\sin (45^\circ + x) \cdot \sin (45^\circ - x)}{= (\sin 45 \cos x + \cos 45 \sin x)(\sin 45 \cos x - \cos 45 \sin x)} \xrightarrow{\forall expansion} \frac{\sqrt{2}}{2} \cos x + \frac{\sqrt{2}}{2} \sin x}{= (\frac{\sqrt{2}}{2} \cos^2 x - \frac{\sqrt{2}}{2} \sin^2 x)} \xrightarrow{\forall expansion} \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \cos^2 x - \frac{\sqrt{2}}{2} \sin^2 x}{= \frac{1}{2} \cos^2 x} \xrightarrow{(5)} \frac{\sin x + \sin^2 x}{1 + \cos x + \cos^2 x} = \tan x$$

$$LHS = \frac{\sin x + \sin 2x}{1 + \cos x + \cos^2 x} = \frac{\sin x + 2\sin x \cos x}{1 + \cos x + 2\cos^2 x - 1} \xrightarrow{\forall 2 \sin x \cos x} \frac{\sqrt{2} 2 \sin x \cos x}{\sqrt{2} \cos^3 x - 1} = \frac{\sin x + 2\sin x \cos x}{\cos x + 2\cos^2 x} \xrightarrow{\forall 2 \sin x \cos x} \xrightarrow{\forall 2 \sin x \cos x} \frac{\sqrt{2} \cos^3 x - 1}{\sqrt{2} \cos^3 x - 1} = \frac{\sin x + 2\sin x \cos x}{\cos x + 2\cos^2 x} \xrightarrow{\forall 2 \sin x \cos x} \xrightarrow{\forall 2 \sin x \cos x} \frac{\sqrt{2} \cos^3 x - 1}{\sqrt{2} \cos^3 x - 1} \xrightarrow{\forall \sin x \cos x} = \frac{\sin x (1 + 2\cos x)}{\cos x (1 + 2\cos x)} \xrightarrow{\forall \cos x (1 + 2\cos x)} \xrightarrow{\forall \cos x + 2\cos^2 x} \xrightarrow{\forall \cos x - 1} \xrightarrow{\forall \cos x (1 + 2\cos x)} \xrightarrow{\forall \cos x - 1} \xrightarrow$$

Copyright reserved

. . .

.

L

Please turn over

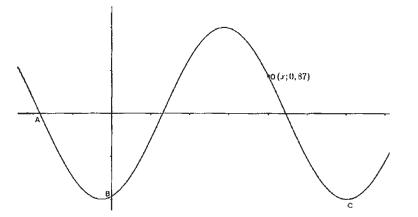
i

	(, , ,)2 , ,	
5.5	$\frac{(\sin x - \cos x)^2 - 1}{\sin^2 x - 1} = 2$	
	$\sin^2 x - 2\sin x \cos x + \cos^2 x - 1 = 2(\sin^2 x - 1)$	$\sqrt{2}\sin^2 x - 2$
	$\sin^2 x - 2\sin x \cos x + \cos^2 x - 1 = 2\sin^2 x - 2$	· 2 Sm x - 2
	$-2\sin^2 x - 2\sin x \cos x + 2 = 0$	
	$-\sin^2 x - \sin x \cos x + 1 = 0$	$\sqrt{\sin^2 x + \cos^2 x}$
	$-\sin^2 x - \sin x \cos x + \sin^2 x + \cos^2 x = 0$	
	$\cos^2 x - \sin x \cos x = 0$	✓ standard form
	$\cos x (\cos x - \sin x) = 0$	✓ common factor
	$\cos x = 0 \qquad or \qquad \cos x - \sin x = 0$	$\checkmark x = \pm 90 + 360k k \in \mathbb{Z}$
	$x = \pm 90^\circ + 360k \qquad \cos x = \sin x$	
	$\tan x = 1$	$\checkmark \tan x = 1$
	$x = 45^\circ + 180k, \ k \in \mathbb{Z}$	$\checkmark x = 45^\circ + 180k$
		(7)
		[31]

•

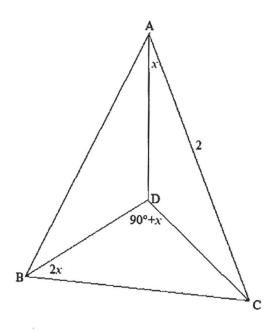
· ·

The graph of $f(x) = -2\cos(x + 15^\circ)$ is given.



6.1	Amplitude = 2	\checkmark	(1)
6.2	Period = 360°	✓	(1)
6.3	Range of $g(x)$: $y \in [0; 4]$	√ √	(2)
6.4.1	$\therefore A = (-105^{\circ}; 0)$	√ √	(2)
6.4.2	B = (0, -1,93)		(2)
6.4.3	$C = (165^{\circ}; -2)$		(2)
6.4.4	$-2\cos(x + 15^{\circ}) = 0,87$ $\cos(x + 15^{\circ}) = -0,435$ $x + 15^{\circ} = 115,785 \dots^{\circ} + 360k, k \in \mathbb{Z}$	~	
	$x = 100,79^{\circ} + 360k$ $\therefore D = (100,79^{\circ}; 0,87)$	✓ ✓	(3)
			[13]

AD is a vertical pole and points B and C are in the same horizontal plane as D, the foot of the tower. $D\hat{A}C = x$, $B\hat{D}C = 2x$, $B\hat{D}C = 90^\circ + x$ and AC = 2.



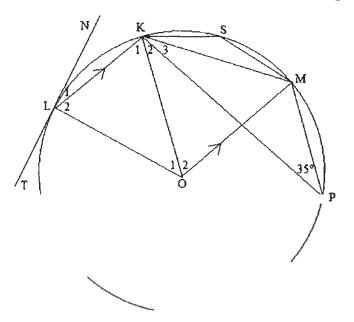
$\begin{array}{ c c } \hline 7.1 & \sin x = \frac{CD}{2} \end{array}$	
$\frac{2}{CD} = 2 \sin x$	\checkmark
$CD = 2 \sin x$	
BC = CD	Subst in Sin-rule 🗸
$\sin(90^\circ + x)$ $\sin 2x$	Cos x ✓
$\frac{BC}{\cos x} = \frac{2 \sin x}{2 \sin x \cos x}$	$2 \sin x \cos x \checkmark$
$BC = \frac{2 \sin x \cdot \cos x}{2 \sin x \cos x}$	Simplification ✓ (6)
= 1	
7.2 $B\hat{C}D = 180^\circ - (90^\circ + x) - 2x$ int $\angle s$ of \triangle = 90° - 3x	· · ·
In $\triangle BCD$:	
$\frac{BD}{\sin(90^\circ - 3x)} = \frac{1}{\sin(90^\circ + x)}$ $\frac{BD}{-3x} = \frac{1}{-3x}$	Subst in sine-form
$\overline{\cos 3x} = \overline{\cos x}$	Co-functions√ (3)
$\frac{\cos 3x}{\cos x} = 2\cos 2x - 1.$	
	[9]

Copyright reserved

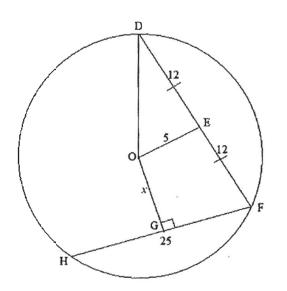
Please turn over

Question 8

8.1 In the diagram, O is the centre of the circle. KL // OM, NLT is a tangent to the circle at L.



8.1.1	$\hat{O}_2 = 70^{\circ}$	\angle at centre circle = 2× \angle at circumf	S ✓ R✓	(2)
8.1.2	$\begin{aligned} \widehat{R}_1 &= 70^{\circ} \\ \widehat{L}_2 &= 70^{\circ} \\ \widehat{O}_1 &= 40^{\circ} \end{aligned}$	alt. \angle s, KL // MO \angle s opp = radii int \angle s of Δ	$S + R \checkmark$ $S + R \checkmark$ $S + R \checkmark$	(3)
8.1.3	$\hat{L}_1 = 20^{\circ}$	radius ⊥ tangent	S ✓ R✓	(2)
8.1.4	<i>Ŝ</i> = 135°	opp \angle of cyclic quad	S ✓ R ✓	(2)



8.2.1	$O\hat{E}D = 90^{\circ}$ $OD^{2} = 12^{2} + 5^{2}$ $= 160^{\circ}$	Centre circle midpoint chord Theorem of Pythagoras	S ✓ R ✓	
	= 169 OD = 13		~	(4)
8.2.2	FG = 12,5	Centre circle ⊥ chord	S ✓ R✓	(2)
				[15]

· · ·

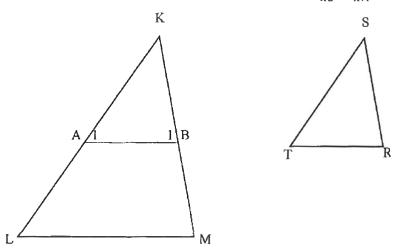
(6)

QUESTION 9

· .

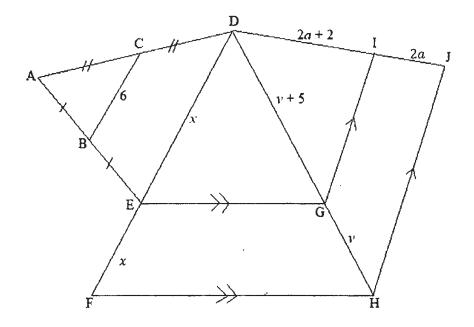
.

9.1 In Δ KLM and Δ STR, $\hat{K} = \hat{S}$, $\hat{L} = \hat{T}$, $\hat{M} = \hat{R}$. Prove that $\frac{ST}{KL} = \frac{SR}{KM}$.



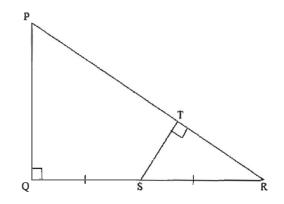
9.1	Construction		<u>√</u>	
	In Δ KAB and Δ STR:			
	AK = ST	construction		
	KB = SR	construction		
	$\widehat{K} = \widehat{S}$	given	\checkmark	
	$\therefore \Delta KAB = \Delta STR$	SAS	<i>✓</i>	
	$\therefore \hat{A}1 = \hat{T}$		\checkmark	
	But $\hat{T} = \hat{L}$	given		
	$\therefore \hat{A}1 = \hat{T}$		<u>√</u>	
	∴ AB // LM	corresponding angles =	ľ	
	$\therefore \frac{KA}{KL} = \frac{KB}{KM}$	line // one side of Δ	\checkmark	
	$\therefore \frac{ST}{KL} = \frac{SR}{KM}$	AK = ST and $KB = SR$		(6)

9.2 In the sketch EG // FH and GI // HJ. AB = BE and AC = CD. BC = 6, DE = x, EF = x - 3, DG = y + 5, GH = y, DI = 2a + 2 and IJ = 2a - 3.



9.1	x = 12	midpt theorem	S ✓ R ✓	(2)
9.2	$\frac{x}{x-3} = \frac{y+5}{y}$ 12 y+5	line // to one side of Δ	S ✓ R ✓	
	$\frac{1}{9} = \frac{1}{y}$ $12y = 9y + 45$ $3y = 45$ $y = 15$		\checkmark	(3)
9.3	$\frac{2a+2}{2a-3} = \frac{y+5}{y}$ $\frac{2a+2}{2a-3} = \frac{20}{15} = \frac{4}{3}$ $6a+6 = 8a-12$	line // to one side of Δ	S ✓ R ✓	
	2a = 18 $a = 9$			(3)

,



10.1	In $\triangle PQR$ and $\triangle STR$			
	$\hat{Q} = \hat{T}$	90° given	S + R ✓	
	$\hat{R} = \hat{R}$	common ∠	S + R ✓	
	$\therefore \hat{P} = \hat{S}$	int \angle s of \triangle	S + R ✓	
	$\Delta PQR /// \Delta STR$	AAA	R ✓	(4)
10.2	$\frac{PQ}{ST} = \frac{RQ}{RT} = \frac{PR}{RS}$	similarity	\checkmark	
	$\therefore PR.RT = RS.RQ$			
	but $RS = QS$		\checkmark	(2)
	$\therefore PR.RT = QS.RQ$			
				[10]

TOTAL: 150