

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

GRADE 12

NATIONAL SENIOR CERTIFICATE

PHYSICAL SCIENCES P2 (CHEMISTRY)

JUNE 2023

COMMON TEST

MARKING GUIDELINES

MARKS: 150

This memorandum consists of 11 pages

1.1 $\mathsf{D}\checkmark\checkmark$ (2)

1.2 $C \checkmark \checkmark$ (2)

1.3 $A \checkmark \checkmark$ (2)

1.4 B $\checkmark\checkmark$ (2)

 $1.5 \qquad A \checkmark \checkmark \tag{2}$

1.6 B $\checkmark\checkmark$ (2)

1.7 $C \checkmark \checkmark$ (2)

1.8 $\mathsf{D}\,\checkmark$

1.9 B $\checkmark\checkmark$ (2)

1.10 B ✓ ✓ (2) **[20]**

QUESTION 2

2.1.1 4,5,5 - trimethylhexa - 1,3 - diene

REMOVED

Marking criteria:

- correct stem i.e. hexadiene√
- all substituents trimethyl correctly identified√
- IUPAC name completely correct including numbering, sequence and hyphen and commas√

(3)

(3)

2.1.2 $2 - \text{methylbutan} - 2 - \text{ol } \mathbf{OR} \ 2 - \text{methyl} - 2 - \text{butanol}$

Marking criteria:

- correct stem i.e. butanol√
- substituent methyl correctly identified√
- IUPAC name completely correct including numbering, sequence and hyphen and commas√

2.2.1 F√ (1)

2.2.2 E√ (1)

2.3.1 <u>A bond/an atom/a group of atoms</u> that <u>determine(s)</u> the (physical and) <u>chemical properties</u> of a group of <u>organic compounds</u>.

Marking criteria:

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark

(2)

2.3.2 carboxyl√

(1)

2.3.3

Marking criteria:

Whole structure correct 2 or zero

(2)

2.3.4 $C_2H_4O_2 \checkmark + C_2H_6O \checkmark \rightarrow C_4H_8O_2 \checkmark + H_2O \checkmark$ balancing \checkmark

Marking criteria:

- 1 for each correct reactant and product
- 1 for correct balancing
- If structural formulae are used Max 4/5
- Any additional reactant or product: -1 mark

(1)

(5)

2.3.5 Sulphuric acid/H₂SO₄ ✓

ethanol√√

(2)

2.4 Compounds with the <u>same molecular formula</u> \checkmark but <u>different functional</u> groups/homologous series. \checkmark

Marking criteria:

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark

(2)

2.5

2.3.6

Marking criteria:

- Only Functional group correctly drawn√ ½
- Whole structure correct $\sqrt{2}$

(2)

3.1.1 The temperature at which the vapour pressure of a substance equals atmospheric pressure ✓✓

Marking criteria:

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark

(2)

3.1.2 Compound X / methylpropane Is branched / has a smaller surface area / is less spherical while compound Y / butane has a straight chain / is unbranched / has a bigger surface area / is more spherical√

> The intermolecular forces in compound Y are stronger than the intermolecular forces in compound X. ✓

> More energy is required to overcome the intermolecular forces in compound Y. ✓

(3)

3.1.3

(2)

3.2.1 Butanoic acid ✓✓

> The compounds must be of comparable molecular mass OR butanoic acid has the same molecular mass as pentan - 1 - ol√

OR

Pentanoic acid ✓✓

The compounds must be of comparable chain length OR butanoic acid has the same chain length as pentan – 1 - ol√

(3)

3.2.2 GREATER THAN✓ (1)

The carboxylic acid has 2 sites for hydrogen bonding while the alcohol has 3.2.3 only 1 site for hydrogen bonding. ✓

The intermolecular forces will therefore be stronger between the molecules of the carboxylic acid. ✓

More energy will therefore be required to overcome the intermolecular forces between the molecules of the acid. ✓

[14]

4.1.2

Marking criteria:

- Double bond on second carbon $\sqrt{\frac{1}{2}}$
- Whole structure correct $\sqrt{2/2}$

4.1.3 <u>concentrated sulphuric acid</u> ✓ (If concentrated is not mentioned, then 1/2) (2)

- 4.2.1 Hydrogenation√ (1)
- 4.2.2 Hydrogen/H₂√ (1)
- 4.2.3 Platinum/Pt catalyst√ (1)
- 4.3.1 Halogenation/bromination/substitution√ (1)
- 4.3.2 Require uv light. Or heat√ (1)

4.3.3

Marking criteria:

- Br on second carbon $\sqrt{\frac{1}{2}}$
- Whole structure correct $\sqrt{\frac{2}{2}}$

(2)

(2)

4.4.1	<u>Dilute strong base</u> /KOH/NaOH/H ₂ O√	(1)	
4.4.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Marking criteria: Correct reactants ✓ Correct products ✓ Balancing ✓	(3)	
4.5		(1) [17]	
QUEST	ION 5		
5.1	Marking criteria: Give the mark for per unit time only if in context of reaction rate.		
	ANY ONE		
	 Change in concentration ✓ of products/reactants per (unit) time. ✓ 		
	 Change in amount/number of moles/volume/mass ✓ of products or reactants per (unit) time. 		
	 Amount/number of moles/volume/mass of products formed/reactants used per (unit) time. ✓✓ 		
	 Rate of change in concentration/amount of moles/number of moles/volume/mass. ✓ ✓ (2 or 0) 	(2)	
5.2	<u>Change in the mass</u> of the flask and contents√ <u>decreases per unit time / per second / every 30 seconds.</u> √		
5.3	Mass of CaCO₃ decreases or is used up. ✓ A decrease in the exposed surface area. ✓ The number of effective collisions per unit time decreases. ✓		
	OR NOTE: If no mention made of CaCO ₃ or HCl used up, award		
	HCl is used up. ✓ Concentration of the HCl decreases. ✓	(3)	
5.4		(1)	

5.5

Average rate =
$$\frac{\Delta m}{\Delta t}$$

6,58 x 10⁻² \(\times = \frac{X - 217,50}{180 - 0} \)
\(X = 205,66 \text{ g} \)

Marking criteria:

- Substitute rate√
- Substitute ∆m√
- ∆t√
- Final answer√

(4)

5.6 203,95 g ✓ Reaction_has reached completion. ✓

(2)

5.7 Marking criteria:

- Calculate mass of pure CO₂√
- Formula: $n = \frac{m}{M}$
- Formula $n(CO_2)$ produced $=\frac{V}{V_m}$
- Substitute $n = 0.31 \checkmark$
- Substitute V_m = 22,4 ✓
- Final answer = 6.944 dm³ ✓

m(CO₂) =
$$\frac{217,50 - 203,95}{44}$$
 = 13,55 g
= $\frac{13,55}{44}$ = 0,31 mols
n(CO₂)produced = $\frac{V}{V_m}$ 0,31 $\sqrt{\frac{V}{22,4}}$

$$V = 6.944 \, \text{dm}^3 (6.90) \checkmark \tag{6}$$

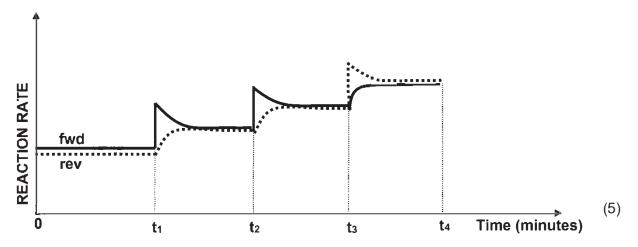
5.8 A catalyst provides an alternate pathway of lower activation energy / lowers the activation energy√

More molecules will therefore have sufficient energy ✓ The number of effective collisions per unit time increases ✓

(3)

(1)

5.9.2 DECREASES✓


(1) **[25]**

The reaction is in a <u>state of</u> (dynamic) <u>equilibrium.</u> \checkmark \checkmark OR The <u>rate of forward reaction equals the rate of reverse reaction.</u> OR The concentrations of the reactants and products remain constant.			
Note IF: Forward reaction equals reverse reaction.	1/2	(2)	
Less than√		(1)	
$t_1 \checkmark$ The concentration of N_2 was increased./graph shows a concentration of $N_2 \checkmark$	n increase in	(2)	
Marking criteria: If any one of the underlined key phrases in the correct context is om 1 mark.	nitted, deduct		
		(2)	
temperature√		(1)	
concentration of the products decreases. ✓ Therefore the reverse reaction / endothermic reaction is favoured.	ed. ✓	(4)	
	OR The rate of forward reaction equals the rate of reverse reaction. Note IF: Forward reaction equals reverse reaction. Less than✓ t₁✓ The concentration of N₂ was increased./graph shows a concentration of N₂✓ Marking criteria: If any one of the underlined key phrases in the correct context is om 1 mark. When the equilibrium in a closed system is disturbed, the sinstate a new equilibrium by favouring the reaction that will candisturbance. ✓✓ temperature✓ INCREASED✓ According to the graph the concentration of the reactants inconcentration of the products decreases. ✓ Therefore the reverse reaction / endothermic reaction is favoure (According to Le Chatelier's Principle) an increase in temperat	OR The rate of forward reaction equals the rate of reverse reaction. OR The concentrations of the reactants and products remain constant. Note IF: Forward reaction equals reverse reaction. 1/2 Less than the concentration of N2 was increased./graph shows an increase in concentration of N2 was increased./graph shows an increase in concentration of N2 was increased./graph shows an increase in concentration of N2 was increased./graph shows an increase in concentration of N2 was increased./graph shows an increase in concentration of the underlined key phrases in the correct context is omitted, deduct 1 mark. When the equilibrium in a closed system is disturbed, the system will reinstate a new equilibrium by favouring the reaction that will cancel/oppose the disturbance. INCREASED According to the graph the concentration of the reactants increases OR the concentration of the products decreases. Therefore the reverse reaction / endothermic reaction is favoured. (According to Le Chatelier's Principle) an increase in temperature favours the	

MARKING CRITERIA

6.1.7

- At t₁, forward reaction is favoured (vertical upward climb of solid line) ✓
- At t₂, forward reaction is favoured (vertical upward climb of solid line) ✓
- At t₃, reverse reaction is favoured (vertical upward climb of broken line) ✓
- Vertical upward increase in rates at t₂, t₃ and t₄. ✓
- Equilibrium rate at t₄ .> equilibrium rate at t₃ > equilibrium rate at t₂√

6.2.1 Products can be converted back to reactants. ✓✓

6.2.2 REVERSE√ (1)

6.3

Marking criteria:

- Change in no. of mol of C =1√
- Using the correct ratio√
- Subtraction: initial mol X change in mol of X AND initial mol Y – change in mol of Y. ✓
- Equilibrium mol of X and Y; divide by 2√
- Correct Kc expression (formulae in square brackets) ✓
- Substitution of equilibrium concentrations into Kc expression. ✓
- Final answer 0,71√

	Х	Υ	С	
Ratio	2	1	2	
Initial quantity (mol)	2,5	1,75	0	
Change (mol)	1	0,5	1√	Using ratio ✓
Quantity at equilibrium (mol)	1,5	1,25	1	✓
Equilibrium concentration (mol·dm ⁻³)	0,75	0,625	0,5	✓ Divide by 2

$$K_{c} = \frac{[C]^{2}}{[X]^{2}[Y]} \checkmark$$

$$\therefore = \frac{[0,5]^{2}}{[0,75]^{2}[0,625]} \checkmark$$

$$= 0,71 \checkmark$$

No K_c expression, correct substitution. $\frac{6}{7}$

Wrong K_c expression $\frac{4}{7}$

(2)

7.1.1	acids <u>produce hydrogen ions (H+/H3O+/hydronium ions)</u> in <u>aqueous solutions.</u> $\checkmark\checkmark$	
	Marking criteria: If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark.	(2)
7.1.2	Hydrogen sulphate ion/ HSO₄ ✓ Acts as an acid and a base ✓	(2)
7.2.1	H ₂ O√ (COO) ₂ ²⁻ √	(2)
7.2.2	Oxalic acid. ✓ Has a higher Ka value. ✓ Ionises to a greater extent / more completely. OR has a higher ion concentration. ✓	(3)
7.3.1	REMAINS THE SAME✓	(1)
7.3.2	DECREASES✓ The volume increases while number of moles is constant / The number of moles of acid decreases in proportion to the volume of water ✓	(2)
7.4.1	The point at which the <u>acid</u> has <u>completely reacted</u> with the base / The point at which the <u>base</u> has <u>completely reacted</u> with the acid $\checkmark\checkmark$	(2)

Marking criteria:

- Formula $\frac{C_A V_A}{C_B V_B} = \frac{n_A}{n_B} / n = cV \checkmark$
- Substitutefor C_A, V_A and V_B in the above formula/cV√
- Ratio n_A: n_B√
- Final answer:0,365 mol.dm³/

$$C_{A}V_{A}$$
 = n_{A} \checkmark n_{B} 0.29×12.58 = 1×2 $C_{B} = 0.365 \text{ mol.dm}^{3} \checkmark$

OR

n(NaHCQ) = 2 n (H₂SO₄)
= 2 cV
$$\checkmark$$

= 2(029)(001258)
= 7,2964 x 10⁻³ mols
c(NaHCO₃) = $\frac{n}{V}$
= $\frac{7,2964 \times 10^{-3}}{0,02}$
= 0,365 mol.dm³

(4)

7.4.3 **POSITIVE MARKING FROM QUESTION 7.4.2**

Marking criteria:

- Any Formula: n = CV / m = nM / m = CMV Formula: m = nM√
- Substitute0,365 from 7.3.1 and 0,25√
- Substitute $\underline{M} = 84\sqrt{}$ in any of the above formulae
- Final answer: 7,665 g ✓

OPTION1

OPTION2

n(NaHCQ) i n250cm³ = cV
$$\checkmark$$
 m = CMV \checkmark
= $(0,365)(0,25)$ \checkmark
= 0,09125 mols
m(NaHCQ) i n250cm³ = nM = $(0,365)(0,25)$ \checkmark (84) \checkmark
= $(0,365)(0,25)$ \checkmark (85) \checkmark (87) \checkmark (8