

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2023

MATHEMATICS P1

MARKS: 150

TIME: 3 hours

This question paper consists of 9 pages, including an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 10 questions. Answer ALL the questions.
- 2. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 3. Answers only will not necessarily be awarded full marks.
- 4. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 5. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. An information sheet, with formulae, is included at the end of the question paper.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

- 1.1 Solve for *x*:
 - $1.1.1 \quad x^2 9 = 0 \tag{2}$

1.1.2
$$x-5+\frac{2}{x}=0$$
 (correct to TWO decimal places) (4)

1.1.3
$$x = 1 + \sqrt{7 - x}$$
 (5)

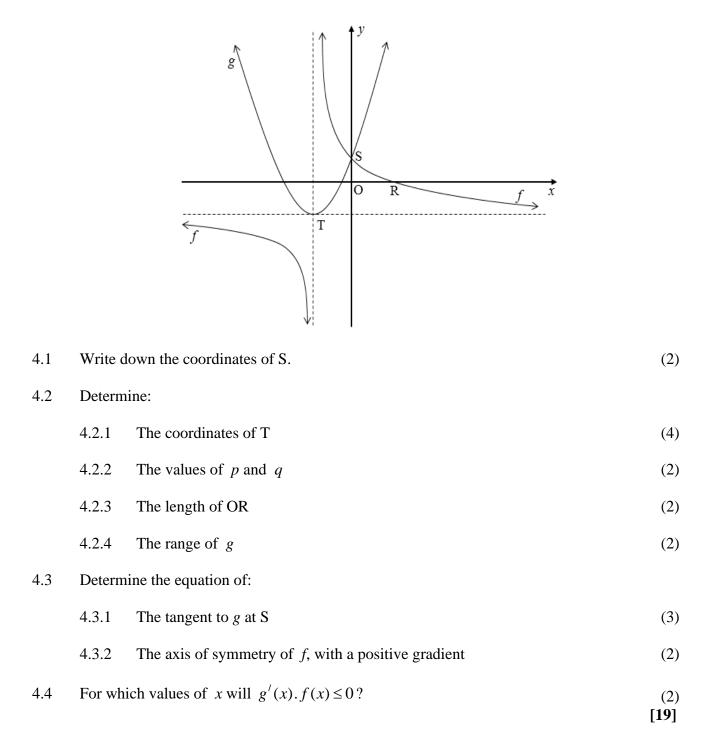
$$1.1.4 \qquad x^2 + 2x - 15 \ge 0 \tag{3}$$

1.2 Solve simultaneously for x and y in:

$$y + 2x = 3$$

$$y^{2} - y = 3x^{2} - 5x$$
(6)

1.3 Simplify completely, WITHOUT the use of a calculator: $n \sqrt{\frac{10^n + 2^{n+2}}{5^{2n} + 4(5^n)}}$ (4) [24] MATHEMATICS P1


QUESTION 2

2.1	Given the following geometric series: $\frac{24}{x} + 12 + 6x + 3x^2 + \dots$					
	2.1.1	Determine the value of r , the common ratio, in terms of x .	(1)			
	2.1.2	Determine the values of x for which this series converges.	(2)			
	2.1.3	If $x = 4$, determine the sum of the series to 15 terms.	(3)			
2.2	Calcula	tte: $\sum_{n=1}^{\infty} 6(2)^{-n}$	(3)			
2.3	The sum of the first <i>n</i> terms of an arithmetic series is given by $S_n = -n^2 + 8n$.					
	2.3.1	Calculate the sum of the first 15 terms.	(2)			
	2.3.2	Calculate the value of T_{15} .	(2)			
	2.3.3	If the first term of the series is 7, which term of the series will have a value of -169 ?	(4) [17]			
QUESTION 3						
Consid	er the fol	lowing quadratic number pattern: 95; 72; y; 32;				
3.1	Determine the value of <i>y</i> .					
3.2	If $y = 51$, determine the general term of the number pattern in the form $T_n = an^2 + bn + c$.					
3.3	Determine T_{22} .					
3.4	Which term in the number pattern will be equal to 1 040?					

[11]

The diagram below shows the graphs of $f(x) = \frac{5}{x+p} + q$ and $g(x) = 5x^2 + 10x + 3$.

The two graphs intersect at S, the y-intercept of both graphs. R is the x-intercept of f. The asymptotes of f cut at T, the turning point of g.

Given: $h(x) = a^x$; a > 0 and $a \neq 1$. B $\left(-1; \frac{1}{2}\right)$ is a point that lies on *h*, the graph of h(x).

5.1	Determine the value of a .	
5.2	Write down the equation of h^{-1} in the form $y = \dots$	(2)
5.3	Sketch the graphs of h and h^{-1} on the same set of axes. Clearly show all intercepts with the axes.	
5.4	Write down the domain of h^{-1} .	(1)
5.5	Determine the value(s) of x for which $h^{-1}(x) > 1$.	
5.6	If it is given that $t(x) = \left(\frac{1}{2}\right)^x - 1$.	
	5.6.1 Describe the transformation from h to t .	(2)
	5.6.2 Determine the equation of the asymptote of <i>t</i> .	(1) [13]

QUESTION 6

- 6.1 A school bought computers for R980 000. The value of the computers depreciates annually at a rate of 9,2% p.a. on the reducing-balance method. Calculate the book value of the computers after 7 years.
- 6.2 Siphokazi invests R13 500 for a certain number of years. She earns interest at a rate of 8,2% per annum, compounded annually. The final value of the investment is worth R20 020,28.For how many years was the money invested?
- 6.3 On 1 January 2017 Nelson deposited R3 500 into a savings account. On 1 January 2020, he deposited another R5 700 into the same account. The interest rate for the first two years (starting from 1 January 2017) is 7% per annum compounded quarterly, and the interest rate for the last three years is 8% per annum compounded monthly. Calculate the amount in the savings account after 5 years.

(6) [**13**]

(3)

(4)

- 7.1 Determine f'(x), from first principles, if $f(x) = 5 2x^2$. (4)
- 7.2 Determine:

7.2.1
$$f'(x)$$
, if $f(x) = 2x^5 - 7\sqrt{x} + \frac{1}{x}$ (4)

7.2.2
$$\frac{d}{dx} \left[\frac{2x^2 - x - 6}{2x + 3} \right]$$
 (3)

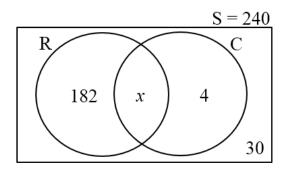
QUESTION 8

Given: $f(x) = x^3 - 5x^2 - 8x + 12$ and g(x) = ax + q. A, B(2;-16) and C(6;0) are the points of intersection of f and g.

8.1	Determine the coordinates of the turning points of f .	
8.2	Determine the other two <i>x</i> -intercepts of <i>f</i> .	(3)
8.3	Sketch the graph of f , clearly indicating turning points and intercepts with the axes.	(4)
8.4	Determine the values of a and q .	(2)
8.5	Determine whether the graph is concave up or concave down at point B.	(3)
8.6	For which values of x, is $f(x) \ge g(x)$?	(4) [20]

A large cruise ship uses fuel at a cost of $4x^2$ rand per hour, where x is the speed of the ship in km/h.

Other operating costs, including labour, amount to R1 000 per hour. [Hint: distance = speed x time: s = vt]


- 9.1 Show that the total cost for a trip of 500 km is given by, $C(x) = 2\,000x + \frac{500\,000}{x}$. (3)
- 9.2 At what speed should the ship travel on this 500 km trip to keep the total cost as low as possible?

QUESTION 10

- 10.1 Events A and B are mutually exclusive. It is further given that:
 - 3P(B) = P(A)
 - P(A or B) = 0,64

Calculate P(B).

- 10.2 The probability that it will not rain on a given day is 37%. A child has a 12% chance of falling in dry weather and is three times as likely to fall in wet weather.
 - 10.2.1 Draw a tree diagram to represent ALL the possible ways in which the weather could affect whether a child falls or not. Show the probabilities associated with EACH branch, as well as the outcomes. (4)
 - 10.2.2 What is the probability that a child will not fall on any given day? (2)
- 10.3 A group of 240 learners were asked whether they play Rugby (R) or Cricket (C) as a school sport. 206 of the learners indicated that they play rugby, 28 said they play cricket, 30 said they play neither and x said they play both. The information is represented in the Venn diagram below.

- 10.3.1 Determine the value of x.
- 10.3.2 Would you regard playing rugby and cricket as independent events? Support your answer with calculations. (Round answers correct to 2 decimal places.)

(3) [**14**]

(2)

(3)

(5) [**8**]

INFORMATION SHEET: MATHEMATICS

$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$								
A = P(1+ni)	A = P(1 - ni)	$A = P(1-i)^n$	$A = P(1+i)^n$					
$T_n = a + (n-1)d$	$S_{\rm n} = \frac{n}{2}(2a + (n-1))$	1) <i>d</i>)						
$T_n = ar^{n-1}$	$S_n = rac{a(r^n-1)}{r-1}$;	<i>r</i> ≠1	$S_{\infty} = \frac{a}{1-r}$; $-1 < r < 1$					
$F = \frac{x \left[\left(1 + i \right)^n - 1 \right]}{i}$		$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$						
$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$								
$d = \sqrt{(x_2 - x_1)^2 + (y_2 - x_1)^2}$	$(y_1)^2$	$\mathbf{M}\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$						
y = mx + c	$y - y_1 = m(x - x_1)$	$m = \frac{y_2 - y_1}{x_2 - x_1}$	$m = \tan \theta$					
$(x-a)^2 + (y-b)^2 = r^2$								

In $\triangle ABC$:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cdot \cos A \qquad area \,\Delta ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos^2 \alpha - \sin^2 \alpha \qquad \sin(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\overline{x} = \frac{\sum x}{n} \qquad \qquad \partial^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n} \qquad \qquad P(A) = \frac{n(A)}{n(S)} P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$
 $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

Copyright reserved