

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

PREPARATORY EXAMINATION

SEPTEMBER 2023

Marking Guidelines

QUES	TION 1		
1.1.1	x=0 or $x=4$	AA✓✓ answer	(2)
1.1.2	$2x^2 + 3x - 7 = 0$	A✓ standard form	
	$x = \frac{-3 \pm \sqrt{(3)^2 - 4(2)(-7)}}{2(2)}$	CA✓ substitution into formula	
	x = 1,27 or $x = -2,77$ Penalise 1 mark for incorrect rounding off.	CA✓ 1,27 CA✓ -2,77	(4)
1.1.3	(x-1)(x-4) > 0 $+$ 1 4	A✓ factors	
	x < 1 or $x > 4$	$CA \checkmark x < 1$ $CA \checkmark x > 4$	
	(x-1)(x-4) > 0	OR A✓ factors	
	+ + + 4		
	x < 1 or $x > 4$	$CA \checkmark x < 1$ $CA \checkmark x > 4$	(3)

1.1.4	$(3^x-3)(3^x-7)=0$	A✓ factors	
	$3^{x} = 3$ or $3^{x} = 7$ $\log_{3} 7 = x$ x = 1 $1,77 = xORLet 3^{x} = m \therefore 3^{2x} = m^{2}m^{2} - 10m + 21 = 0(m-3)(m-7) = 0m = 3$ or $m = 7$	$CA \checkmark 3^x = 3$ or $3^x = 7$ $CA \checkmark$ using logs $CA \checkmark x = 1$ $CA \checkmark x = 1,77$ OR	
	$3^{x} = 3$ or $3^{x} = 7$ $\log_{3} 7 = x$ x = 1 or $1,77 = x$	$A \checkmark m=3 \text{ or } m=7$ $CA \checkmark 3^x = 3 \text{ or } 3^x = 7$ $CA \checkmark \text{ using logs}$ $CA \checkmark x=1$ $CA \checkmark x=1,77$	(5)
1.2	$x = 2 - y \dots (3)$ $(2 - y)^{2} + y^{2} + 6(2 - y) - 4y + 4 = 0$ $4 - 4y + y^{2} + y^{2} + 12 - 6y - 4y + 4 = 0$ $2y^{2} - 14y + 20 = 0$ $y^{2} - 7y + 10 = 0$ $(y - 2)(y - 5) = 0$ $y = 2 \text{ or } y = 5$ $x = 2 - 2 = 0$ $x = 2 - 5 = -3$	A✓ equation (3) CA✓ substitution CA✓ standard form CA✓ factors CA✓ y values CA✓ x values	(6)

1.3	For equal roots $\Delta = 0$		
	$25 - n^2 = 0$	$\mathbf{A}\checkmark 25 - n^2 = 0$	
	(5-n)(5-n)=0	A✓ factors	
	$n=\pm 5$	CA✓ answer	
	OR	OR	
	For equal roots $\Delta = 0$		
	$25 - n^2 = 0$	$\mathbf{A} \checkmark 25 - n^2 = 0$	
	$25 = n^2$	$\mathbf{A}\checkmark 25 = n^2$	
	$n = \pm 5$ answer only = full marks	CA✓ answer	(3)
			[23]

QUEST	TION 2		
2.1.1	3; 7; 11; 399.		
	a=3		
	d=4		
	n=20		
	$T_n = a + (n-1)d$		
	$T_{20} = 3 + (20 - 1)4$	A✓ substitute into correct T _n formula	
	$T_{20} = 79$	Tormura	
	OR	CA✓ answer	
	3; 7; 11; 399.	OR	
	4; 4; 4;		
	$T_n = 4n - 1$		
	$T_{20} = 4n - 1$		
	$T_{20} = 4(20) - 1$	A✓ substitute into	
	$T_{20} = 79$	correct T _n formula	(2)
	20	CA✓ answer	(2)
2.1.2	$T_n = 399$		
	$T_n = a + (n-1)d$		
	399 = 3 + (n-1)4	A✓ substitute into	
		correct T _n formula	
	396 = (n-1)4		
	99 = n - 1	CA✓ answer	
	100=n	OR	
	$T_n = 399$		
	$T_n = 4n - 1$		
	399 = 4n - 1	A✓ substitute into	
	400=4n	correct T _n formula	
	100=n		

		CA✓ answer	(2)
2.2.1	$T_1 = a$ $T_{13} = a + 24$		
	$T_{13} = a + 24$ $T_{13} = a + (13 - 1)d$		
	a+24=a+12d	$A \checkmark a + 24 = a + 12d$	
	24=12 <i>d</i>		
	2=d	$A \checkmark d = 2$	(2)
2.2.2	$S_n = \frac{n}{2} \Big[2a + (n-1)d \Big]$		
	$S_{200} = \frac{200}{2} \left[2(a) + (200 - 1)2 \right]$	CA✓ substitute into the correct	
	$S_{200} = 100(2a + 398)$	formula	
	$S_{200} = 200a + 39800$	CA✓ answer	
	OR	OR	
	$T_n = a + (n-1)d$		
	$T_{200} = a + (200 - 1)(2)$		
	= a+398		
	$S_n = \frac{n}{2}(a+l)$		(2)
	$S_{200} = \frac{200}{2} [a + (a + 398)]$	CA✓ substitute into the correct	
	$S_{200} = 100(2a + 398)$	formula	
	=200a+39800	CA✓ answer	
			[8]

QUES	TION 3		
3.1	1; 11; 27; 49; 77; 111; 151;		
	10; 16; 22; 28; 34; 40;		
	6; 6; 6; 6; 6;		
	The third term is 27	A✓ answer	(1)
3.2	Second difference is 6		
	2a=6		
	a=3	$A \checkmark a = 3$	
	10=3a+b		
	10 = 3(3) + b		
	1 = b	CA ✓ b=1	
	1=3+1+c		
	-3=c	$CA \checkmark c = -3$	
	$T_n = 3n^2 + n - 3$	CA✓ answer	
	OR	OR	
	-; -; 27; 49; 77; 111; 151;		
	-; 16; 22; 28; 34; 40;		
	6; 6; 6; 6;		
	2a=6		
	a=3		
	$T_n = an^2 + bn + c$	A ✓ a = 3	
	$49 = 3(4)^2 + b(4) + c$		
	$77 = 3(5)^2 + b(5) + c$		
	$49 = 48 + 4b + c \dots (1)$		
	$77 = 75 + 5b + c \dots (2)$		
	28 = 27 + b(2) – (1)		
	1 = b	$CA \checkmark b = 1$	
	49 = 48 + 4(1) + c	CA✓ c=-3	
	-3=c	$CA \checkmark C = -3$ $CA \checkmark answer$	
	1000	CA, answer	(4)

	$T_n = 3n^2 + n - 3$		
3.3	First difference 10; 16; 22; 28; 34; 40 6; 6; 6; 6; 6;		
	$T_n = 6n + 4$	$\mathbf{A} \checkmark T_n = 6n + 4$	
	418 = 6n + 4		
	414 = 6n	2.2.0	
	69 = n	$CA \checkmark $ value of n	
	70 = n + 1	CA✓ between T ₆₉	
	∴ between T_{69} and T_{70}	and T_{70} OR	
	OR		
	$418 = T_{n+1} - T_n$	$A \checkmark 418 = T_{n+1} - T_n$	
	$418 = 3(n+1)^{2} + (n+1) - 3 - (3n^{2} + n - 3)$		
	$418 = 3(n^2 + 2n + 1) + n + 1 - 3 - 3n^2 - n + 3$		
	$418 = 3n^2 + 6n + 3 + n - 2 - 3n^2 - n + 3$		
	418 = 6n + 4		
	414 = 6n		
	69 = n	$CA\checkmark$ value of n	
	70 = n + 1	CA✓ between T ₆₉	(3)
	∴ between T_{69} and T_{70}	and T_{70}	
			[8]

QUEST	TON 4		
4.1.1	$T_1 = x$ $T_2 = x + 1$ $r = \frac{T_2}{T_1}$		
	$r = \frac{x+1}{x}$	A✓ answer	(1)
4.1.2	$T_3 = T_2 \times r$ $T_3 = (x+1) \times \frac{x+1}{x}$	$CA\checkmark (x+1)\times \frac{x+1}{x}$	
	$T_3 = \frac{\left(x+1\right)^2}{x}$	CA✓ answer	(2)
4.1.3	$r = \frac{(2+1)}{2} = \frac{3}{2}$	CA✓ value of r	
	∴ no, since $r > 1$ OR No, for the series to converge: $-1 < r < 1$	CA✓ answer with motivation	(2)
4.2	For AP: $T_2 - T_1 = T_3 - T_2$ a - 6 = b - a 2a - 6 = b(1) For GP: $\frac{T_2}{T_1} = \frac{T_3}{T_2}$ $\frac{b}{a} = \frac{16}{b}$	A✓ equation (1)	

a=1 or 9 b=2(9)-6=12	$CA\checkmark$ values of b	
0 = (a-1)(a-9)	$CA\checkmark$ values of a	
$0 = a^2 - 10a + 9$		
$16a = 4a^2 - 24a + 36$ $0 = 4a^2 - 40a + 36$	CA✓ standard form	
$16a = (2a - 6)^2$		
$16a = b^2$ (2)	A✓ equation (2)	

QUES	TION 5		
5.1	x = 3 $y = -1$	A✓ answer A✓ answer	(2)
5.2	$x - \text{intercept:}$ $0 = \frac{-3}{3 - x} - 1$ $1 = \frac{-3}{3 - x}$ $3 - x = -3$ $x = 6$ $y - \text{intercept} = \frac{-3}{3 - 0} - 1 = -2$	A \checkmark sub $y = 0$ $CA \checkmark x = 6$ $A \checkmark y = -2$	
	OR $y = \frac{-3}{-(x-3)} - 1$	OR	
	$y = \frac{3}{x-3} - 1$ $x - \text{intercept:}$ $0 = \frac{3}{x-3} - 1$ $1 = \frac{3}{x-3}$	$A \checkmark \text{ sub } y = 0$	
	x-3=3 $ x=6$	$CA\checkmark x=6$	
	$y - \text{intercept} = \frac{3}{0 - 3} - 1 = -2$	$\mathbf{A}\checkmark \ y = -2$	(3)

5.3	O -1 -2	A✓ shape CA✓ intercepts CA✓ asymptotes	(3)
5.4	y = -x + c $-1 = -3 + c$ $2 = c$	CA✓ sub (3;-1)	
	y = -x + 2 OR	CA✓ answer OR	
	$y = \frac{-3}{-3 - x} - 1$ $y = (3 - x) - 1$ $y = -x + 2$ OR	$A\checkmark (3-x)-1$ $CA\checkmark \text{ answer}$ OR	
	$y = \frac{3}{x-3} - 1$ $y = -(x-3) - 1$ $y = -x + 3 - 1$	$A \checkmark -(x-3)-1$	
	y = -x + 2	CA✓ answer	[10]

QUES'	TION 6		
6.1	$m = \tan 135^{0}$ $m = -1$ $\therefore y = -x + 2$	$A \checkmark m = \tan 135^{\circ}$ $A \checkmark m = -1$	(2)
6.2	$0 = -x + 2$ $x = 2$ $\therefore S(2;0)$ Answer only = full marks	A✓ equating to zero A✓ answer	(2)
6.3	$y = a(x - x_1)(x - x_2)$ $y = a\left(x + \frac{1}{2}\right)(x - 2)$ $-12 = a\left(1 + \frac{1}{2}\right)(1 - 2)$ $-12 = \frac{-3a}{2}$ $8 = a$ $y = 8\left(x + \frac{1}{2}\right)(x - 2)$ $y = 8\left(x^2 - \frac{3}{2}x - 1\right)$ $y = 8x^2 - 12x - 8$ Accept method of simultaneous equations	A \checkmark sub $x = -\frac{1}{2}$ and $x = 2$ A \checkmark sub $(1;-12)$ A \checkmark $a = 8$ A \checkmark $y = 8\left(x^2 - \frac{3}{2}x - 1\right)$	(4)
6.4	$x = \frac{-b}{2a}$ $x = \frac{-(-12)}{2(8)} = \frac{3}{4}$ $y = 8\left(\frac{3}{4}\right)^2 - 12\left(\frac{3}{4}\right) - 8$ $y = \frac{-25}{2}$ $V\left(\frac{3}{4}; \frac{-25}{2}\right)$	$A \checkmark x$ value $CA \checkmark \text{ substitution}$ $CA \checkmark y$ value	

OR

$$g'(x) = 16x - 12$$

$$0 = 16x - 12$$

$$12 = 16x$$

$$\frac{3}{4} = x$$

$$y = 8\left(\frac{3}{4}\right)^2 - 12\left(\frac{3}{4}\right) - 8$$

$$y = \frac{-25}{2}$$

$$V\left(\frac{3}{4}; \frac{-25}{2}\right)$$

OR

x-intercepts S(2;0) and R $\left(-\frac{1}{2};0\right)$

$$midpoint x = \frac{-\frac{1}{2} + 2}{2}$$

$$x = \frac{3}{4}$$

$$y = 8\left(\frac{3}{4}\right)^2 - 12\left(\frac{3}{4}\right) - 8$$

$$y = \frac{-25}{2}$$

$$V\!\left(\frac{3}{4}; \frac{-25}{2}\right)$$

OR

$$y = 8\left[x^2 - \frac{12}{8}x - 1\right]$$

$$y = \left[\left(x^2 - \frac{3}{2}x + \frac{9}{16} \right) - 1 - \frac{9}{16} \right]$$

$$y = 8 \left[\left(x - \frac{3}{4} \right)^2 - \frac{25}{16} \right]$$

$$A \checkmark 0 = 16x - 12$$

OR

A✓ subst into correct midpoint formula CA✓ x value

CA ✓ y value

OR

A✓ completing the square

	$y = 8\left(x - \frac{3}{4}\right)^2 - \frac{25}{2}$ $V\left(\frac{3}{4}; \frac{-25}{2}\right)$	$CA \checkmark x$ value and y value	(3)
6.5	$k > \frac{-25}{2}$	CA✓ answer	(1)
6.6	$x > \frac{3}{4}$ OR $(-1)(16x - 12) < 0$	CA✓ answer OR	
	$-16x < -12$ $x > \frac{3}{4}$	A✓ answer	(1)
6.7	$T\left(-1;\frac{1}{2}\right)$	$A \checkmark x$ – coordinate $A \checkmark y$ – coordinate	(2)
			[15]

QUES	TION 7		
7.1	(4;-1)	A✓ answer	(1)
7.2	$y = \log_{u} x$ $-1 = \log_{u} 4$	A✓ sub(4;-1)	
	$a^{-1} = 4$ $a = \frac{1}{4}$	$\mathbf{A} \checkmark a^{-1} = 4$	
			(2)
7.3	$y = \left(\frac{1}{4}\right)^x$	A✓ answer	(1)
7.4	$A(-1;4) \text{ and } B(1;0)$ $AB = \sqrt{(-1-1)^2 + (4-0)^2}$ $AB = \sqrt{4+16} = \sqrt{20}$ $AB = 2\sqrt{5} = 4,47$	A✓ B(1;0) CA✓ sub points A and B CA✓ answer	(3)
7.5	x > 4	A√ answer	(1) [8]

QUES	STION 8		
8.1	$A = P(1-i)^n$	A✓ sub into correct	
	$10767, 26 = 15800 \left(1 - \frac{12}{100}\right)^n$	formula	
	$\frac{10767,26}{15800} = \left(0,88\right)^n$	CA✓ correct use of	
	$\log_{(0,88)}\left(\frac{10767,26}{15800}\right) = n$	logs	
	2,999998 = n		
	n = 3 years	CA✓ answer	(3)
8.2	$\left(1 + \frac{r}{100}\right) = \left(1 + \frac{i}{m}\right)^m$ $\left(1 + \frac{r}{100}\right) = \left(1 + \frac{7,64}{200}\right)^2$		
		A✓ subst into correct formula	
	$r = 100 \left[\left(1 + \frac{7,64}{200} \right)^2 - 1 \right]$ $r = 7,79\%$	CA✓ answer	(2)
8.3.1	T ₀ T ₁ T ₂ T ₃ T ₂₄ R500 R500 R500 R500		
	$F = \frac{x\left[\left(1+i\right)^{n}-1\right]}{i}$		
	»MA		

	$500[(1.5,8)^{24}]$	$A\checkmark$ values of $i \& n$	
	$F = \frac{500 \left[\left(1 + \frac{5.8}{1200} \right)^{24} - 1 \right]}{\frac{5.8}{1200}}$	CA✓ subst into correct	
	= R12 691,25	CA✓ answer	(3)
			(3)
8.3.2	R368 400 - R12 691,25 = R355 708,75 $P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$	CA \checkmark R355 708,75 A \checkmark $n = 72$	
	$355708,75 = \frac{x \left[1 - \left(1 + \frac{10,4}{1200}\right)^{-72}\right]}{10,4}$	CA✓ sub into correct formula	
	R6661, 78 = x	CA✓ answer	(4)
8.3.3	Balance Outstanding = $P(1+i)^n - \frac{x[(1+i)^n - 1]}{i}$	CA✓	
	$=355708,75\left(1+\frac{10,4}{1200}\right)^{56}-\frac{6661,78\left[\left(1+\frac{10,4}{1200}\right)^{56}-1\right]}{\frac{10,4}{1200}}$	$355708,75 \left(1 + \frac{10,4}{1200}\right)^{56}$ $CA\checkmark$ $\frac{6661,78 \left[\left(1 + \frac{10,4}{1200}\right)^{56} - 1 \right]}{\frac{10,4}{1200}}$	
	Balance outstanding = R99 128,46	CA✓ R99 128,46	
	OR	OR	
	Remaining instalments = $72-56=16$		
	Balance = $\frac{6661,78 \left[1 - \left(1 + \frac{10,4}{1200}\right)^{-16}\right]}{\frac{10,4}{1200}}$	A✓ n=16 CA✓ subst into correct formula	

SA Exam Papers | This paper was downloaded from saexampapers.co.za

= R99128,52	CA ✓ R99128,52	(3)
		[15]

QUESTION 9 Penalise ONCE for incorrect notation, either in 9.1 or 9.2. $f(x) = 2x^2 + 9$ 9.1 $f(x+h) = 2(x+h)^2 + 9$ $=2x^2+4xh+2h^2+9$ A \checkmark calculating f(x + h) $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $f'(x) = \lim_{h \to 0} \frac{2x^2 + 4xh + 2h^2 + 9 - 2x^2 - 9}{h}$ CA√ sub into formula $f'(x) = \lim_{h \to 0} \frac{4xh + 2h^2}{h}$ CA√ simplifying $f'(x) = \lim_{h \to 0} \frac{h(4x + 2h)}{h}$ CA√ factors $f'(x) = \lim_{h \to 0} 4x + 2h$ CA√ answer f'(x) = 4x(5) $y = 2x^2 + x$ A√ product 9.2.1 $\frac{dy}{dx} = 4x + 1$ CA√ answer (2) $\sqrt{y+x} = x+3$ 9.2.2 $\left(\sqrt{y+x}\right)^2 = \left(x+3\right)^2$ A√ squaring both sides $y + x = x^2 + 6x + 9$ A√ correct product $y = x^2 + 5x + 9$ $\frac{dy}{dx} = 2x + 5$ CA√ answer (3) 9.2.3 $\frac{d}{dx}\left[4x^{-1} + \sqrt{3}x^{-\frac{1}{2}}\right]$ $A \checkmark 4x^{-1} + \sqrt{3}x^{-\frac{1}{2}}$ $=-4x^{-2}-\frac{\sqrt{3}}{2}x^{-\frac{3}{2}}$ (3) CA CA✓✓ each term

9.3.1	$f(x) = x^3 + 1$	A✓ A ✓ answer	(2)
9.3.2	At P $x = 2$: $y = 2^3 + 1 = 9$		
	P(2;9)	$CA \checkmark y$ – coordinate	
	m = 12	CA ✓ <i>m</i> =12	
	y = 12x + c		
	9 = 12(2) + c		
	-15 = c		
	y = 12x - 15	CA✓ answer	(3)
			[18]

QUES	TION 10		
10.1	$f(x) = ax^{3} + bx^{2}$ $f(1) = a(1)^{3} + b(1)^{2} = a + b$ $f(2) = a(2)^{3} + b(2)^{2} = 8a + 4b$ Ave grad = $\frac{f(2) - f(1)}{2 - 1}$ Ave grad = $\frac{8a + 4b - a - b}{1}$ $5,5 = 7a + 3b \dots $	A \checkmark subst x = 1 & x = 2 A \checkmark correct subst into average gradient formula	
	$-18 = 108a + 12b(2)$ $(1) \times 4: 22 = 28a + 12b(3)$ $40 = -80a(3) - (2)$ $\frac{-1}{2} = a$ $5,5 = 7\left(\frac{-1}{2}\right) + 3b$ $5,5 = -3,5 + 3b$ $9 = 3b$	A✓ equation (1) A✓ equation (2) A✓ solving simultaneously	(5)
10.2	$3 = b$ $f'(x) = \frac{-3x^2}{2} + 6x$ $0 = \frac{-3x^2}{2} + 6x$ $0 = -3x^2 + 12x$ $0 = x^2 - 4x$ $0 = x(x-4)$	A \checkmark $f'(x)$ CA \checkmark equating $f'(x) = 0$	

	x=0 or $x=4$	1	
	$\therefore x = 4$	$CA \checkmark x = 4$	(4)
	At N $x=4$: $y=\frac{-1}{2}(4)^3+3(4)^2=16$		
	N(4;16)	CA✓ y=16	
10.3	f''(x) = -3x + 6	CA✓ <i>f</i> "(<i>x</i>)	
	-3x+6>0	$CA \checkmark -3x + 6 > 0$	
	-3x > -6	3 1 2 3 3 3 3 3 3	
	x < 2		
	k=2	CA✓ answer	(3)
	OR		
	f''(x) = -3x + 6		
	0 = -3x + 6		
	x=2		
	$\therefore k = 2$		
	OR		
	$Midpt x = \frac{0+4}{2} = 2$		
	$x = 2$ $\therefore k = 2$		
	$\ldots \kappa = 2$		(12)
			[12

QUES	TION 11		
11.1	Volume = 1bh $25 = (1,5x)(x)h$ $\frac{25}{1,5x^2} = h$	A✓ substitution A✓ answer	(2)
11.2	Area = $4(1,5x)h + 3(1,5x)x + 2xh$ Area = $4(1,5x) \times \frac{25}{1,5x^2} + 3(1,5x^2) + 2x \times \frac{25}{1,5x^2}$ Area = $\frac{100}{x} + 4,5x^2 + \frac{50}{1,5x}$	A✓ substitution in to SA formula A✓ substituting h	(2)
11.3	$A = 100x^{-1} + 4,5x^{2} + \frac{50x^{-1}}{1,5}$ $\frac{dA}{dx} = -100x^{-2} + 9x - \frac{100x^{-2}}{3}$ $0 = \frac{-100}{x^{2}} + 9x - \frac{100}{3x^{2}}$ $0 = -300 + 27x^{3} - 100$	$\mathbf{A} \checkmark \frac{dA}{dx} = 0$	
	$0 = 27x^{3} - 400$ $400 = 27x^{3}$ $x = \sqrt[3]{\frac{400}{27}}$	CA✓ simplification	
	x = 2,46	$CA\checkmark$ value of x	(3)
			[7]

QUE	STION 12		
12.1	a=4	A✓	
	b=13	A✓	
	c=5	A✓	
	d = 4	CA✓	
	e=6	CA✓	(5)
12.2	Greybound bus = 23 people	CA✓ answer	(1)
12.3	P(only one bus) = $\frac{6+4+2}{40} = \frac{12}{40} = \frac{3}{10}$	CA✓ adding CA✓ answer	(2)
			[8]

QUE	STION 13		
13.1	8! ways =40 320 ways	A✓ 8! OR 40 320	(1)
13.2	$1\times6\times1+1\times6\times1=1440 \text{ ways}$ OR $2\times6\times1=1440 \text{ ways}$	A✓ 6! A✓ 1×6!×1 A✓ 1440	(3)
13.3	$1 - \left[\frac{(2 \times 5!)}{1440} + \frac{(2 \times 5!)}{1440} \right] = \frac{2}{3}$ OR $\frac{1440 - (2!5! + 2!5!)}{1440}$ $= \frac{2}{3}$	A✓ subtracting from1 CA✓ denominator A✓ 2!5! CA✓ answer	(4)
			[8]

TOTAL MARKS: 150

