

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

MATHEMATICS P2/WISKUNDE V2

MARKING GUIDELINES/NASIENRIGLYNE

MAY/JUNE/MEI/JUNIE 2023

MARKS: 150 PUNTE: 150

These marking guidelines consist of 21 pages./ Hierdie nasienriglyne bestaan uit 21 bladsye.

Prof Pajendran Governe:

2623-63 13

Approved by Umalusi External Moderator on 15 May 2023

Please turn over/Blaai om asseblief

Copyright reserved/Kopiereg voorbehou

DBE May/June/Mei Junie 2023

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, mark only the FIRST attempt.
- If a candidate has crossed out an attempt at an answer and not redone the question, mark the
 crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers values in order to solve a problem is NOT acceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n problecm op te los, word NIE toegelaat nie.

	GEOMETRY • MEETKUNDE
C	A mark for a correct statement (A statement mark is independent of a reason)
S	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
S/R	Award a mark if statement AND reason are both correct
	Ken 'n punt toe as die bewering EN rede beide korrek is

3
SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/May/June/Mei/Junie 2023

QUESTION/VRAAG 1

1.1.1	a = 1730,22	$\sqrt{a} = 1730,22$	
	b = 13,96	$\sqrt{b} = 13.96$	
	$\hat{y} = 1730.22 + 13.96x$	✓ equation	
			(3)
1.1.2	$\hat{y} = 1730,22 + 13,96x$	/ t	
	$\hat{y} = 1730,22 + 13,96(28500)$	✓ substitution	
	$\hat{y} = R399590,22$	✓ answer	(2)
	OR/OF		(2)
	$\hat{v} = R399599,64 \text{ (calc)}$	✓✓ answer	
			(2)
1.1.3	r = 0.98002	2 01000	
	r = 0.98	✓ answer	(1)
1.1.4	There is a very strong positive correlation between		
	the amount spent on advertising and sales. /	✓ strong positive /	
	Daar is 'n baie sterk positiewe korrelasie tussen die	sterk positief	
1.2.1	bedrag spandeer op advertensie en die verkope. 1 552195	1.552105	(1)
1.2.1	$\bar{x} = \frac{1332193}{9}$	$\sqrt{\bar{x}} = \frac{1552195}{9}$	
	$\bar{x} = 172466.11$	√ answer	
	1 - 1 / 2 400,11	answer	(2)
1.2.2	$\sigma = 56950,09$	✓ answer	
			(1)
1.2.3	$\bar{x} + \sigma$		
	=172466,11+56950,09	$\sqrt{\bar{x}} + \sigma$	
	= 229416,20		
	2 years/jaur	✓ answer	
	- jeursjuur		(2)
			[12]

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 2

A D

5 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 3

y = -x - 11		
t = -(-1) - 11		✓ substitution
t = -10		\checkmark value of t
		(2)
$\tan \alpha = -1$		$\checkmark \tan \alpha = -1$
$\alpha = 135^{\circ}$		✓ 135°
		(2)
$\tan 63,43^{\circ} = m_{AC}$		$\checkmark \tan 63,43^\circ = m_{\rm AC}$
$m_{AC} = 2$		✓ answer
		(2)
$m_{AC} = 2$		
	$OR/OF y - y_1 = 2(x - x_1)$	
		\checkmark substitution of m and A
		✓ equation
/		(2)
	$t = -10$ $\tan \alpha = -1$ $ref. \angle = 45^{\circ}$ $\therefore \alpha = 135^{\circ}$ $\tan 63,43^{\circ} = m_{AC}$ $m_{AC} = 2$ $m_{AC} = 2$ $A(-1; -10)$	$A(-1; t)$ $t = -(-1) - 11$ $t = -10$ $\tan \alpha = -1$ $ref. \angle = 45^{\circ}$ $\therefore \alpha = 135^{\circ}$ $\tan 63,43^{\circ} = m_{AC}$ $m_{AC} = 2$ $A(-1; -10)$ $y = 2x + k$ $-10 = 2(-1) + k$ $k = -8$ $OR/OF y - y_1 = 2(x - x_1)$ $y - (-10) = 2(x - (-1))$ $y = 2x - 8$

PRIVATE BAG X335, PRETORIA 01101

APPROVED MAPKING GILINELLA

PUBLIC EXAMENA

Copyright reserved/Kopiereg voorbehou

	\	III ALC C	
	$(x-19)^{2} + y^{2} = 15^{2}$ $(x-19)^{2} + y^{2} = 225$	PROVED MARKING GILINEIN	$(x-19)^2 + y^2 \checkmark 225$
	$\frac{x_G + (-11)}{2} = 4$ $x_G = 19$	TOPE BASIC PRETORIA OROS 2023 PRETORIA GOINEI II	$\checkmark x_G = 19$
3.4	$y = 0$ $x_{\rm E} = -11$	(51C)	$\checkmark x_{\rm E} = -11$
	$F\hat{E}D = 360^{\circ} - (116,57^{\circ} + 135^{\circ})$ $= 108,43^{\circ}$		✓ FÊD=108,43°
	DÊO=116,57°	[co-int. \angle 's, DE \parallel AB]	✓ DÊO =116,57°
	ABE = 63,43°	[vert. opp ∠'s]	\checkmark ABE = 63,43°
	OR/OF		(3
	FÊD=108,43°		✓ FÊD=108,43°
	$\hat{DEA} = \hat{EAB} = 71,57^{\circ}$		\checkmark DÊA = EÂB = 71,57°
	$E\hat{A}B = 71,57^{\circ}$		\checkmark EÂB = 71,57°
	EÂB=135°-63,43°		
	OR/OF		(3
	FÊD = 108,43°		✓ FÊD = 108,43°
	$\hat{E}_1 = 45^{\circ}$	[∠s on a str line]	$\checkmark \hat{E}_1 = 45^{\circ}$
	$\hat{E}_2 = 63,43^{\circ}$	[corres. \angle 's, DE \parallel AB]	
.3.2	ABE = 63,43°	[vert. opp ∠'s =]	✓ ABE = 63,43°
	$B \to C (4;0) \to (4+5;0+10) =$	(9;10)	
	$A \rightarrow B(x;y) \rightarrow (x+5;y+10)$		$\checkmark (x+5;y+10)$
	OR / OF by translation / met trans	lasie	
	$x_{\rm C} = 9$ $y_{\rm C} =$	= 10	$\checkmark x_{\rm C} = 9 \checkmark y_{\rm C} = 10$
	4	$\frac{+(-10)}{2} = 0$	
	$x_{\rm B} = 4$		N _B
3.3.1	0 = 2x - 8		$\sqrt{x_{\rm B}} = 4$
	y = 2x - 8		

QUESTION/VRAAG 4

4.1	M(-6;-3)	√ -6 √ -3 (2)
4.2.1	$x^{2} + y^{2} + 24x - 10y + 153 = 0$ $(x+12)^{2} + (y-5)^{2} = -153 + 144 + 25$	$\sqrt{r^2} = -153 + 144 + 25$
	$(x+12)^{2} + (y-5)^{2} = 16$ $r^{2} = 16$	7 - 103 1111123
	r = 4 units	✓ length of radius (2)
4.2.2	$NM = \sqrt{(-12 - (-6))^2 + (5 - (-3))^2}$	✓ substitution into distance formula
	NM = 10 units	\checkmark NM = 10 units
	SM = 5 units	\checkmark SM = 5 units
	TS = 10 - 5 - 4 = 1 unit	✓ answer (4)
4.3.1	R(-6; -8) y = -8	$\checkmark y_R = -8$
	y 0	✓ equation (2)

Q g

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

DBE/May/June/Mei/Junie 2023

$4.3.2 m_{\text{NM}} = \frac{5 - (-3)}{12 \cdot (-6)}$	✓ substitution
$m_{\text{DM}} = -\frac{4}{7}$	$\sqrt{m_{\text{NM}}} = -\frac{4}{2}$

$$m_{\text{tangent}} = \frac{3}{4}$$

-5 = $\frac{3}{4}(-17) + c$ OR/OF $v - v_1 = \frac{3}{4}(x - x_1)$

$$\sqrt{m_{\text{tangent}}} = \frac{3}{4}$$

$$\begin{vmatrix} -5 = \frac{3}{4}(-17) + c & OR/OF & y - y_1 = \frac{3}{4}(x - x_1) \\ c = \frac{31}{4} & y - (-5) = \frac{3}{4}(x - (-1)) \end{vmatrix}$$

$$m_{\text{tangent}} = \frac{3}{4}$$

$$\begin{vmatrix}
-5 = \frac{3}{4}(-17) + c & \text{OR/OF} & y - y_1 = \frac{3}{4}(x - x_1) \\
c = \frac{31}{4} & y - (-5) = \frac{3}{4}(x - (-17)) \\
y = \frac{3}{4}x + \frac{31}{4} & y = \frac{3}{4}x + \frac{31}{4}
\end{vmatrix}$$
 $\checkmark m_{\text{tangent}} = \frac{3}{4}$
 $\checkmark \text{ substitution of } m \text{ and } N$

OR/OF

$$NS = SM = 5$$

$$S\left(\frac{-12-6}{2}; \frac{5-3}{2}\right)$$

$$S \text{ midpoint}$$

$$m_{\text{SK}} = \frac{1 - (-5)}{-9 + 17}$$

$$= \frac{6}{8} = \frac{3}{4}$$
 $y + 5 = \frac{3}{4}(x + 17)$
 $m_{\text{tangent}} = \frac{3}{4}$
 $\sqrt{m_{\text{tangent}}} = \frac{3}{4}$
 $\sqrt{m_{\text{tangent}}} = \frac{3}{4}$

✓ substitution of
$$m$$
 and $K(-17; -5)$ or S

$$y = \frac{3}{4}x + \frac{31}{4}$$
 or $y = \frac{3}{4}x + 7\frac{3}{4}$

 $\checkmark \quad x = -21$

$$-8 = \frac{3}{4}x + \frac{31}{4}$$

$$\sqrt{-8} = \frac{3}{4}x + \frac{31}{4}$$

$$-32 = 3x + 31$$
$$3x = -63$$

$$x = -21$$

$$\checkmark$$
 PR = PS = 15 units
 \checkmark MS = MR = 5 units

Perimeter PSMR =
$$15 + 15 + 5 + 5$$

= 40 units

✓ answer

(5)

(5)

(5)

DEPARTMENT OF BASIC EDUCATION PRIVATE BAG X895, PRETORIA 0001

APPROVED MARKING GIUDEI IN Please turn over/Blaai om asseblief

Mathematics P2/Wiskunde V2 9 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

	[22]
area of quadrilateral PSMR $= \frac{1}{2}$	✓ answer (2)
OR $\Delta NPS = \Delta SPM = \Delta MPR$ area of ΔNPS	✓ congruent
$=\frac{1}{2}$	✓ answer (2)
$=\frac{\frac{1}{2}(5)(15)}{2(\frac{1}{2})(5)(15)}$	✓ substitution
$\frac{1}{2} \frac{2}{\text{SP.MS} + \frac{1}{2} \text{MR.PR}}$	
area of quadrilateral PSMR $\frac{1}{2}$ NS.SP	
area of ΔNPS	

DBE/May/June/Mei/Junie 2023

 $10 \\ SC/SS/NSC/NSS-Marking~Guidelines/Nasienriglyne$

QUESTION/VRAAG 5

5.1	$\frac{1-\sin(-\theta)\cos(90^\circ+\theta)}{\cos(\theta-360^\circ)}$	
	$1-(-\sin\theta)(-\sin\theta)$	$\sqrt{-\sin\theta} \sqrt{-\sin\theta}$
	$={\cos\theta}$	$\sqrt{\cos\theta}$
	$1-\sin^2\theta$	0000
	$={\cos\theta}$	
	$-\cos^2 \theta$	
	$=\frac{1}{\cos\theta}$	$\sqrt{\cos^2\theta}$
	$=\cos\theta$	✓ answer (5)
5.2.1	cos200°	
	$=-\cos 20^{\circ}$	✓ reduction
	=-p	✓ answer (2)
5.2.2	sin(-70°)	
	$=-\sin 70^{\circ}$	✓ reduction
	$=-\cos 20^{\circ}$	✓ answer
	=-p	
	OR/OF	(2)
	$\sin(-70^\circ)$ $\int_{1-\rho^2}$	
	$=-\sin 70^{\circ}$	reduction
	=-p	✓ answer
		(2)
5.2.3	sin10°	
	$\cos(2(10^{\circ})) = 1 - 2\sin^2 10^{\circ}$	✓ double angle
	$2\sin^2 10^\circ = 1 - \cos 20^\circ$	
	$\sin 10^{\circ} = \sqrt{\frac{1 - \cos 20^{\circ}}{2}}$ $\sin 10^{\circ} = \sqrt{\frac{1 - p}{1 - p}}$ $\sin 10^{\circ} = \sqrt{\frac{1 - p}{1 - p}}$	✓ sin10° as subject
	$\sin 10^{\circ} = \sqrt{\frac{1-p}{2}}$ OR/OF OR/OF OR/OF OR/OF OR/OF OR/OF	✓ answer (3)
	$ sin 10^{\circ} = \sqrt{\frac{P}{2}} $ $ order = \sqrt{\frac{P}$	
	sin10°	
	sin(30° – 20°)	✓ using special angle
	$= \sin 30^{\circ} \cos 20^{\circ} - \cos 30^{\circ} \sin 20^{\circ}$	✓ expanding
	$= \frac{1}{2}p - \frac{\sqrt{3}}{2}\sqrt{1 - p^2} = \frac{p - \sqrt{3}\sqrt{1 - p^2}}{2}$	✓ answer
	$=\frac{1}{2}p-\frac{1}{2}\sqrt{1-p^2}=\frac{1}{2}$	(3)
	. NA	

Copyright reserved/Kopiereg voorbehou

	SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne OR/OF sin 10°	
	$\sin(70^{\circ}-60^{\circ})$	✓ using special angle
	$= \sin 70^{\circ} \cos 60^{\circ} - \cos 70^{\circ} \sin 60^{\circ}$	✓ expanding
	$= p \cdot \frac{1}{2} - \sqrt{1 - p^2} \times \frac{\sqrt{3}}{2} = \frac{p - \sqrt{3}\sqrt{1 - p^2}}{2}$	✓ answer (3)
	OR/OF	
	sin10° = cos80°	
	$\cos(60^{\circ} + 20^{\circ})$	✓ using special angle
	$=\cos 60^{\circ}\cos 20^{\circ} - \sin 60^{\circ}\sin 20^{\circ}$	✓ expanding
	$= \frac{1}{2} p - \frac{\sqrt{3}}{2} \cdot \sqrt{1 - p^2}$	✓ answer (3)
5.3	$\cos(A+55^{\circ})\cos(A+10^{\circ}) + \sin(A+55^{\circ})\sin(A+10^{\circ})$ $= \cos[A+55^{\circ} - (A+10^{\circ})]$ $= \cos 45^{\circ}$	✓✓ compound identity
	$= \frac{1}{\sqrt{2}} \text{or} \frac{\sqrt{2}}{2}$	✓ answer (3)
5.4.1	LHS = $\frac{\cos 2x + \sin 2x - \cos^2 x}{\sin x - 2\cos x}$ $= \frac{\cos^2 x - \sin^2 x + 2\sin x \cos x - \cos^2 x}{\sin x - 2\cos x}$ $= \frac{-\sin^2 x + 2\sin x \cos x}{\sin x - 2\cos x}$ $= \frac{-\sin x(\sin x - 2\cos x)}{\sin x - 2\cos x}$ $= -\sin x$ $\therefore \text{ LHS = RHS}$	
5.4.2		(3)
3.4.2	$ \frac{\cos 2x + \sin 2x - \cos^2 x}{-3\sin^2 x + 6\sin x \cos x} $ $ = \frac{\cos 2x + \sin 2x - \cos^2 x}{-3\sin x(\sin x - 2\cos x)} $ $ = \frac{\cos 2x + \sin 2x - \cos^2 x}{(\sin x - 2\cos x)} \times \frac{1}{-3\sin x} $ $ = (-\sin x) \times \frac{1}{-3\sin x} $ Approved Marking All Public Expression in the property of	\checkmark common factor of $-3\sin x$
	$= (-\sin x) \times \frac{1}{-3\sin x}$ APPROVED APPROVED APPROVED APPROVED TO SEE THE PROPERTY OF THE P	✓ substitution
	$=\frac{1}{3}$	✓ answer (3)

Copyright reserved/Kopiereg voorbehou

DBE/May/June/Mei/Junie 2023

12 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

5.5.1	$3\tan 4x = -2\cos 4x$	
	$3\left(\frac{\sin 4x}{\cos 4x}\right) = -2\cos 4x$	✓ identity
	$3\sin 4x + 2\cos^2 4x = 0$ $3\sin 4x + 2(1-\sin^2 4x) = 0$	$\sqrt{1-\sin^2 4x}$
	$-2\sin^2 4x + 3\sin 4x + 2 = 0$ $2\sin^2 4x - 3\sin 4x - 2 = 0$ $(2\sin 4x + 1)(\sin 4x - 2) = 0$	✓ standard form ✓ factors
	$\sin 4x = -\frac{1}{2} \text{or} \sin 4x \neq 2$	(4)
5.5.2	$\sin 4x = -\frac{1}{2}$ $ref. \ \angle = 30^{\circ}$	
	$4x = 210^{\circ} + k.360^{\circ} $ or $4x = 330^{\circ} + k.360^{\circ} $ $x = 52,5^{\circ} + k.90^{\circ}$; $k \in \mathbb{Z}$ or $4x = 330^{\circ} + k.360^{\circ} $ $x = 82,5^{\circ} + k.90^{\circ}$; $k \in \mathbb{Z}$	\checkmark 210°; 330° \checkmark 52,5°; 82,5° \checkmark k.90°; $k ∈ Z$ (3)
		[28]

13 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 6

6.1	Period = 180°	✓ answer
6.2	$\frac{1}{2}$ $\frac{1}$	✓ x-intercepts ✓ turning points ✓ end points
6.3		(3)
0.3	$y \in [-1;1]$ OR/OF $-1 \le y \le 1$	✓ answer (1)
6.4	$g(x) = -\cos 2x$ $g(x+45^\circ) = -\cos 2(x+45^\circ)$ $= -\cos(2x+90^\circ)$ $= \sin 2x$	$\sqrt{-\cos 2(x+45^\circ)}$ $\sqrt{-\cos 2(x+45^\circ)}$
6.5.1	$x \in (-90^\circ; -45^\circ)$ OR/OF $-90^\circ < x < -45^\circ$	(2) (2) (2) (3)
6.5.2	$2\cos 2x - 1 > 0$ $\cos 2x > \frac{1}{2}$ $-\cos 2x < -\frac{1}{2}$ $x \in (-30^{\circ}; 30^{\circ}) \qquad \mathbf{OR}/\mathbf{OF} \qquad -30^{\circ} < x < 30^{\circ}$	(2) $ \checkmark \cos 2x > \frac{1}{2} $ $ \checkmark -\cos 2x < -\frac{1}{2} $ $ \checkmark x = \pm 30^{\circ} \checkmark \text{ interval} $ (4)
		[13]

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

PAPERS

14 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 7

7.1.1	$\frac{AC}{20} = \cos 30^{\circ}$	✓ trig ratio
	$AC = 20\cos 30^{\circ}$	
	$AC = 10\sqrt{3} = 17,32 \text{ units}$	✓ answer
	OR/OF	(2)
	$\frac{AC}{\sin 60^{\circ}} = \frac{20}{\sin 90^{\circ}}$	✓ trig ratio
		trig ratio
	\therefore AC = $20\sin 60 = 17,32$	✓ answer
7.1.2	$AB^{2} = AC^{2} + BC^{2} - 2AC.BC\cos A\hat{C}B$	(2) ✓ cosine formula
	$AB^{2} = (10\sqrt{3})^{2} + 8^{2} - 2(10\sqrt{3})(8)\cos 100^{\circ}$	✓ substitution into cosine formula
	AB = 20,30 units	✓ answer (3)
7.2	$\frac{\sin A\hat{D}B}{AB} = \frac{\sin A\hat{B}D}{AD}$	✓ sine formula in ∆ABD
	$\frac{\sin A\hat{D}B}{20,3} = \frac{\sin 73,4^{\circ}}{20}$	✓ substitution into sine formula
	$\sin A\hat{D}B = \frac{20,3\sin 73,4^{\circ}}{20}$	
	$\widehat{ADB} = 76,58^{\circ}$	✓ answer (3)
		[8]

Copyright reserved/Kopiereg voorbehou

Please

 ${\it LSC/SS/NSC/NSS-Marking Guidelines/Nasienriglyne} DBE/May/June/Mei/Junie~2023$ SC/SS/NSC/NSS-Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 8

8.1

8.1.1(a)	$\hat{T}_2 = 54^{\circ}$	[tan ⊥rad]	✓ S ✓R	(2)
8.1.1(b)	L=36°	[tan-chordtheorem]	✓ S ✓R	(2)
8.1.1(c)	KÔT=72°	$[\angle$ at centre = $2 \times \angle$ at circumference]	✓ S ✓R	(2)
	OR/OF			
	$O\hat{K}T = \hat{T}_2 = 54^{\circ}$	HE 40 - TEACH BY 18 19 19 19 19 19 19 19 19 19 19 19 19 19	✓ S/R	
		[sum of int \angle 's of Δ]	✓ S	(2)
8.1.2	$\hat{\text{KMO}} = 180^{\circ} - (18^{\circ} + 72^{\circ})$		✓ S	
	=90°	[sum of int \angle 's of Δ]	✓ S	
	\therefore KM = ML	[line from centre \perp to chord]	✓ R	(3)
	OR/OF			, ,
	OKT=54°	[∠s opposite = radii]		
	$\hat{K}_1 = 54^{\circ} - 18^{\circ} = 36^{\circ}$		✓ S	
	TMK = 90°	[sum of int \angle 's of Δ]	✓ S	
	\therefore KM = ML	[line from centre \perp to chord]	✓ R	(2)
				(3)

Copyright reserved/Kopiereg voorbehou

Mathematics P2/Wiskunde V2 16 DBE/May/June/Mei/Junie 2023 SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

8.2

8.2.1	$\frac{DC}{CS} = \frac{20}{12} = \frac{5}{3}$ DC RB	✓ S ✓ S
	 ∴ CS = BS ∴ BC DR	✓ R (3)
8.2.2	$\frac{AR}{AD} = \frac{RB}{BS} \text{ [line one side of } \Delta \text{] } \mathbf{OR} \text{[Prop Theorem AB DS]}$ $\frac{AR}{AD} = \frac{5}{BS}$	$\sqrt{\frac{AR}{B}} = \frac{5}{2}$
	$\frac{\overline{AD} = \overline{3}}{48 - \overline{AD}} = \frac{5}{3}$ $\therefore 5\overline{AD} = 144 - 3\overline{AD}$	$\sqrt{\frac{AD}{AD}} = \frac{1}{3}$
	AD = 18 $AB = 20 $ [opp sides of parm]	✓ AD = 18
	:. AD: AB = $18:20 = 9:10$	✓ ratio (3)

Copyright reserved/Kopiereg voorbehou

OR/OF	
$\frac{AR}{RD} = \frac{5}{8} \dots \text{prop thm AB} \parallel DS$ $\frac{AR}{48} = \frac{5}{8}$ $\therefore AR = 30 \text{ and } AD = 18$	$\checkmark \frac{AR}{RD} = \frac{5}{8}$ $\checkmark AD = 18$
$\therefore \frac{AR}{RD} = \frac{AB}{DS} \dots \ \Delta's$ $\therefore AB = 20$ $\therefore AB : AD = 18 : 20 = 9 : 10$	✓ ratio

 ${\it DBE/May/June/Mei/Junie~2023} \ SC/SS/NSC/NSS-Marking~Guidelines/Nasienriglyne$

QUESTION/VRAAG 9

9.1

9.1	Constr: Draw radii OA and OC.	✓ Construction
	Proof:	
	$\hat{O}_1 = 2\hat{B}$ [\angle at centre = $2 \times \angle$ at circumference]	✓ S ✓ R
	$\hat{O}_2 = 2\hat{D}$ [\angle at centre = $2 \times \angle$ at circumference]	
	$\hat{O}_1 + \hat{O}_2 = 360^\circ$ [revolution]	✓ S/R
	$2\hat{B}+2\hat{D}=360^{\circ}$ [revolution]	✓ S
	$\therefore \hat{\mathbf{B}} + \hat{\mathbf{D}} = 180^{\circ}$	(5)

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/May/June/Mei/Junie 2023

9.2

9.2	$\hat{EFG} = 180^{\circ} - \hat{D}_1$	[opp ∠'s of cyclic quad]	✓S ✓ R
	$ \begin{array}{c} $	[co-int \angle 's; EF \parallel DG]	✓S/R
	But $\hat{G} = \hat{D}_2$ $\therefore \hat{D}_1 = \hat{D}_2 = x$	[alt ∠'s; DH FG]	✓ S/R
			(4)
			[9]

PRIVATE BAG X895, PRETORIA 0001

2023 -05- 15

APPROVED MARKING GUIDELING
PUBLIC EXAMINATION

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

PAPERS

2

DBE/May/June/Mei/Junie 2023

SC/SS/NSC/NSS - Marking Guidelines/Nasienriglyne

QUESTION/VRAAG 10

10.1

10.1.1	TPR=90°	[∠ in semi-circle]	✓S ✓R	
	SPR=90°	[∠'s on a straight line]	✓S	
	∴ SR is a diameter	[converse ∠ in semi-circle]	✓R	
				(4)
	OR			
	TKR=90°	[∠ in semi-circle]	√S √R	
	SPR=90°	$[ext \angle of cyclic quad]$	✓S	
	∴ SR is a diameter	[converse ∠ in semi-circle]	✓R	
		OR [chord subtends a right angle]		(4)

PRIVATE BAG X888, PRETORIA 0001

2023 - 05- 15

APPROVED MARKING GIIDFI IN

92

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

PAPERS

10.1.2	$\hat{R}_1 = P\hat{T}K$	[ext ∠ of cyclic quad]	✓S ✓R
	$\hat{P}_1 = P\hat{T}K = \hat{R}_1$	[∠s opp equal sides]	✓S/R
	$\hat{\mathbf{S}} + \hat{\mathbf{R}}_1 = \hat{\mathbf{P}}_1 + \mathbf{P}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓S ✓R
	$\therefore \hat{\mathbf{S}} = \hat{\mathbf{P}}_2$	$[\hat{R}_1 = \hat{P}_1]$	
10.1.3	In ΔSPK and ΔPRK		(5)
10.1.3	$\hat{S} = \hat{P}_2$	[proved]	√s
	$\hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_2$	[common]	√S
	ΔSPK ΔPRK	[∠, ∠, ∠]	✓S/R
	OR/OF		(3)
	In ΔSPK and ΔPRK		
	$\hat{\mathbf{S}} = \hat{\mathbf{P}}_2$	[proved]	√S
	$\hat{\mathbf{K}}_2 = \hat{\mathbf{K}}_2$	[common]	✓S
	SPK =PRK	[sum of \angle s in Δ]	✓S/R
	ΔSPK ΔPRK		(3)
10.2	$\frac{PK}{RK} = \frac{SK}{PK} [\Delta SPK \parallel \\ PK^2 = SK.RK$	ΔPRK]	✓s
	$ST^2 = SK^2 + TK^2$	[Pythagoras]	✓S
	$TK = PK$ $ST^2 = SK^2 + PK^2$	[Given]	
	$ST^2 = SK^2 + SK.RK$		$\checkmark PK^2 = SK.RK$
	$ST^2 = (2RK)^2 + 2RK.$	RK	✓SK = 2RK
	$ST^2 = 6RK^2$		\checkmark ST ² = 6RK ²
	$ST = \sqrt{6}RK$		(5)
			[17]

DEPARTMENT OF BASIC EDUCATION
PRIVATE BAG X895, PRETORIA 0601

APPROVED MARKING GUIDELIN

TOTAL/TOTAAL: 150

