

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

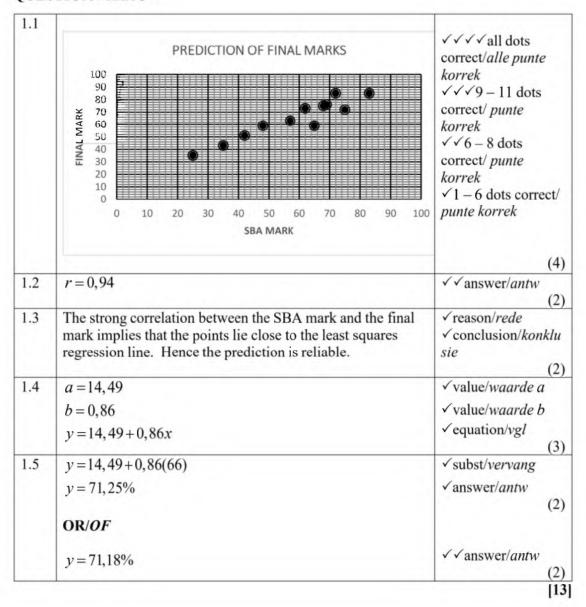
Visit us @ www.saexampapers.co.za

EDUCATION

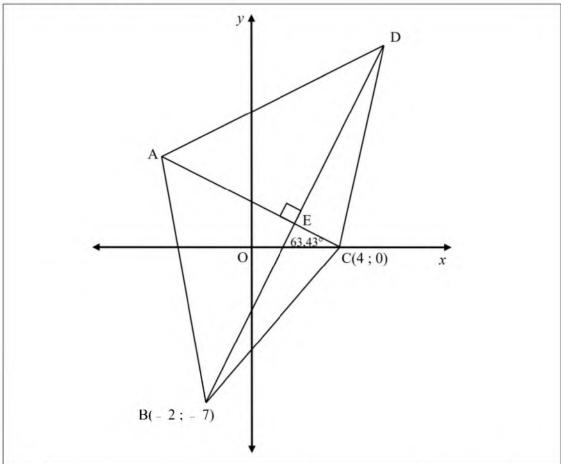
NATIONAL SENIOR CERTIFICATE

GRADE 12/GRAAD 12

MATHEMATICS/WISKUNDE


MEMORANDUM P2/U2

SEPTEMBER 2023


MARKS/PUNTE: 150

This memorandum consists of 19 pages/Hierdie nasienriglyne bestaan uit 19 bladsye.

2.1.1	$\frac{3+4+4+6+10+12+12+4+y}{2} = 7$	
	$\frac{55+y}{9}=7$	$\checkmark \frac{55 + y}{9} = 7$
	55 + y = 63 $y = 8$	✓ value of/waarde y (2
2.1.2	Median = 6	√6
2.2.1	$\overline{x} = \frac{3+4+4+4+6+8+10+12+12+7-n+7+n}{1}$	(1)
	$\overline{x} = \frac{77}{11}$	√77
	$\overline{x} = 7$	√7 (2
	OR/OF	(2
	$\overline{x} = \frac{63 + 7 - n + 7 + n}{11}$	√77
	$\overline{x} = \frac{77}{11}$	
	$\overline{x} = 7$	√7 (2
2.2.2	$\overline{x} - \sigma_x = 3$	✓ equation/vgl
	$7 - \sigma_x = 3$ $\sigma_x = 4$	✓answer/antw
	OR/OF	(2
	$\bar{x} + \sigma_x = 11$	✓equation/vgl
	$7+\sigma_x=11$	
	$\sigma_x = 4$	✓ answer/antw
		[7

2.1	1	
3.1	$y - y_1 = m(x - x_1)$	$m(AC) = -\frac{1}{2}$
	y-(-7)=2(x-(-2))	m(BD) = 2
	y + 7 = 2(x + 2)	

$$y+7=2(x+2)$$

BD: $y=2x-3$

$$\checkmark m(AC) = -\frac{1}{2}$$

 $\checkmark m(BD) = 2$
 $\checkmark \text{ subt } m \text{ and po}$

✓ subt m and point B /verv m en punt B

√answer/antw

OF/OR

$$y = mx + c$$

$$-7 = 2(-2) + c$$

$$-7 = -4 + c$$

$$c = -3$$

BD: y = 2x - 3

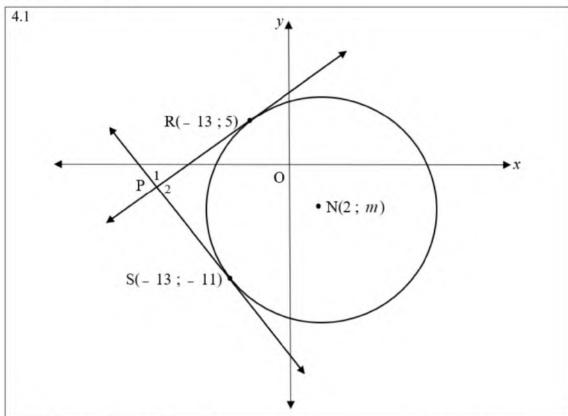
$$m(AC) = -\frac{1}{2}$$

$$m(BD) = 2$$

$$\checkmark m(AC) = -\frac{1}{2}$$

$$\checkmark m(BD) = 2$$

✓ subt *m* and point B /verv *m* en punt B


√answer/antw

(4)

(4)

3.2	$-\frac{1}{2}x + 2 = 2x - 3$	✓equating/vgl
	$\begin{vmatrix} 2 \\ -x + 4 = 4x - 6 \end{vmatrix}$	
	-5x = -10	
	x = 2	✓ value of/waarde x
	subst into BD: $y = 2(2) - 3$	
	y=1	✓ value of/waarde y
	E (2; 1)	(3)
3.3	A(-4; 4) through translation	✓ value of/waarde x ✓ value of/waarde y (2)
	OR/OF	
	Find a point P so that $CE = EP$ P(0; 2)	✓P(0;2)
	Then $CP = PA$	\checkmark A(-4;4)
	A(-4; 4)	(2)
3.4	$AC = \sqrt{(-4-4)^2 + (4-0)^2} = 4\sqrt{5}$	√length/lengte AC
	BE = $\sqrt{(-2-2)^2 + (-7-1)^2} = 4\sqrt{5}$	✓length/lengte BE
	Area of kite = $2 \times \text{area of } \Delta ABC$	
	$=2\times\left(\frac{1}{2}\times4\sqrt{5}\times4\sqrt{5}\right)$	√method/metode
	= 80	✓80
	Enlarged by scale factor 2: $80 \times 4 = 320$ sq unit	✓ answer/antw (5)
	OR/OF	(3)
	$AC = \sqrt{(-4-4)^2 + (4-0)^2} = 4\sqrt{5}$	√length/lengte AC
	$\therefore PR = 8\sqrt{5}$	√length/lengte PR
	BE = $\sqrt{(-2-2)^2 + (-7-1)^2} = 4\sqrt{5}$	
	$\therefore QS = 8\sqrt{5}$	√length/lengte QS
	Area of kite = $2 \times \text{area of } \Delta PQR$	
	$=2\times\left(\frac{1}{2}\times8\sqrt{5}\times8\sqrt{5}\right)$	✓method/metode
	= 320	✓answer/antw
		(5)

[14]

✓ subst R and N/verv R en N

√simplify/vereenv

✓std form/std vorm

√value/value m

(4)

OR/OF

 $(-13-2)^2 + (-11-m)^2 = 17^2$

 $225 + \left(-11 - m\right)^2 = 289$

 $\left(-11-m\right)^2=64$

 $-11 - m = \pm 8$

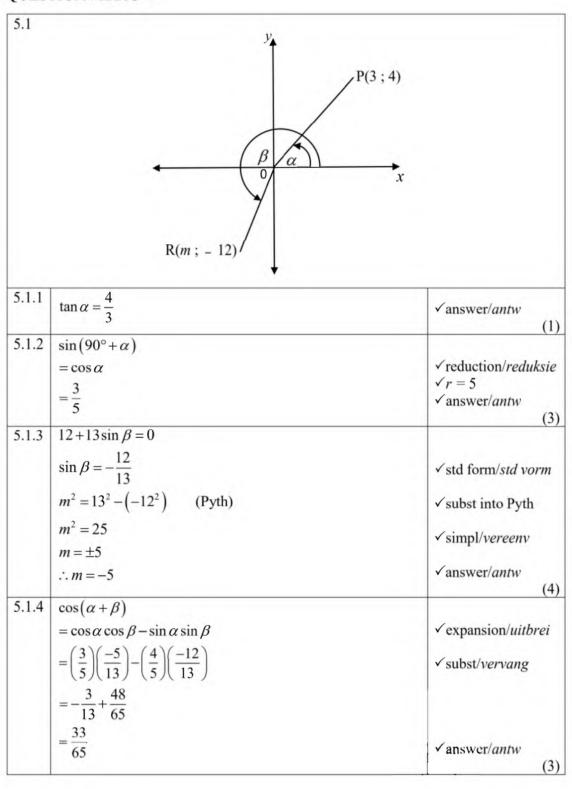
m = -19 or m = -3

NA

✓ subst S and N/verv S en N

√simplify/vereenv

✓std form/std vorm

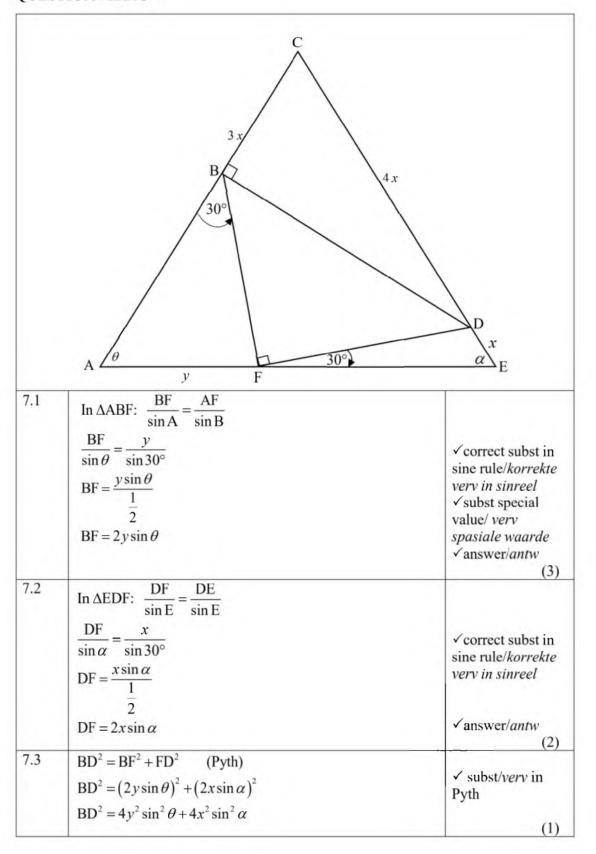

√value/waarde m

(4)

	OR/OF	
	$(-13-2)^2 + (-11-m)^2 = (-13-2)^2 + (5-m)^2$	√√equating
	$225 + m^2 + 22m + 121 = 225 + m^2 - 10m + 25$	√simplify/vereenv
	32m = -96	1
	m = -3	√value/waarde m
		(4)
	OR/OF	
	RS y -axis $\therefore x = -13$ same x -values	✓ use line $x = -13$
	Draw line NK ⊥ RS ∴ NK bisect RS at (-13; -3) line from centre of circle ⊥ to chord	✓Use NK ✓midpt of NK
	∴ N(2; -3)	$\checkmark y = m = -3 \tag{4}$
4.1.1 (b)	$(x-2)^2 + (y+3)^2 = 289$	✓answer/antw (1)
4.1.2 (a)	$m(NR) = \frac{-3-5}{2-(-13)}$	✓ subst in gradient formula/verv in gradiënt formule
	$m(NR) = \frac{-8}{15}$	✓ gradient of NR (2)
4.1.2 (b)	$m(NS) = \frac{-3 - (-11)}{2 - (-13)}$	
	$m(NS) = \frac{8}{15}$	✓ gradient of NS/ gradiënt van NS
		(1)
4.1.3	NR ⊥ PR ∴ $m(PR) = \frac{15}{8}$ NS ⊥ PS ∴ $m(PS) = -\frac{15}{8}$	√tanα def √value/waarde α
	$\tan \alpha = \frac{15}{8} \qquad \tan \beta = -\frac{15}{8}$	√tan β def
	$\tan \alpha - \frac{1}{8}$ $\alpha = 61,93^{\circ}$ $\alpha = 180^{\circ} - 61,93^{\circ}$ $\beta = 118,07^{\circ}$	√value/waarde β
	$\hat{P}_1 = 118,07^{\circ} - 61,93^{\circ} = 56,14^{\circ}$	✓ method/metode
	$\hat{P}_2 = 180^\circ - 56,14^\circ = 123,86^\circ$	✓ method/metode ✓ answer/antw
		(0,

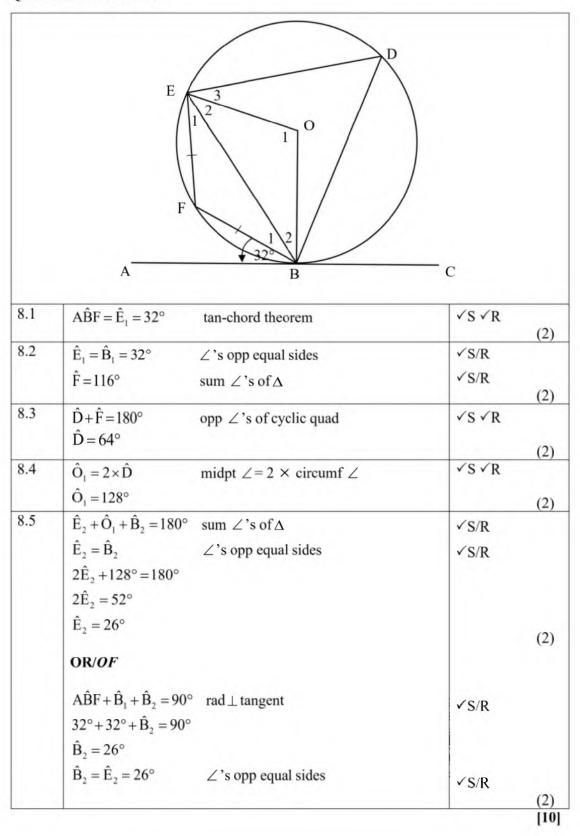
	OF/OR	
	Inclination of NS = 28,07° Inclination of NR = 151,93° $\hat{R}NS = 28,07^{\circ} + 28,07^{\circ}$ $\hat{R}NS = 56,14^{\circ}$ NRPS is cyclic quadrilateral $\hat{P}_2 = 123,86^{\circ}$	$ \begin{array}{c} \checkmark 28,07^{\circ} \\ \checkmark 151,93^{\circ} \\ \checkmark R\hat{N}S = 2 \times 28,07^{\circ} \\ \checkmark 56,14^{\circ} \\ \checkmark Opp \angle' s \text{ cyclic } \\ \text{quad/teenoorst } \angle' e \\ kvh \end{array} $
		✓answer/antw (6
4.1.4	Reflection about $x - \text{axis: } (2; -3) \rightarrow (2; 3)$ Shift 2 units up: $(2; 3) \rightarrow (2; 5)$ Circle M: $(x-2)^2 + (y-5)^2 = 289$	✓✓ equation/vgl
•	c 1 2	A 4 0 x
4.2.1	Diameter = 8 + 4 + 2 + 1=	✓ sum of diameters/ som middellyne
	$S_{\infty} = \frac{a}{1 - r}$ $S_{\infty} = \frac{8}{1 - r}$	som middettyne
		√subst in sum
	$S_{\infty} = \frac{8}{1 - \frac{1}{2}}$ $S_{\infty} = 16$	✓ subst in sum formula/verv in som formule
4.2.2	1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	formula/verv in som

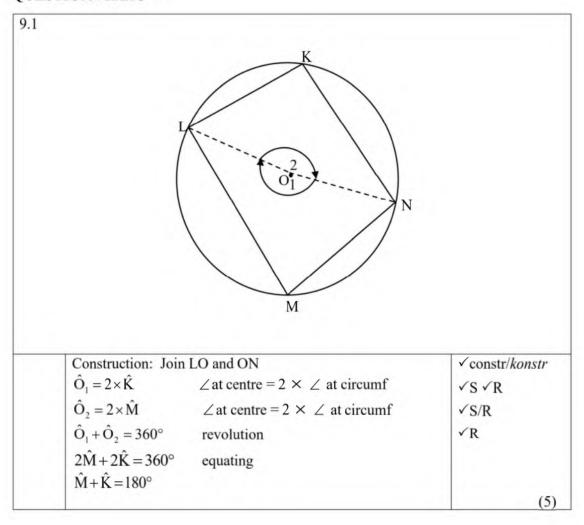
4.2.3	AC=16-4=12	✓AC
	AB = 4	✓AB
1	$BC^2 = AC^2 - AB^2 (Pyth)$	
1	$BC^2 = 12^2 - 4^2$	
1	$BC^2 = 128$	
	$BC = 8\sqrt{2}$	✓BC
	$\therefore \tan C = \frac{4}{8\sqrt{2}} = \frac{\sqrt{2}}{4}$	✓tan ratio (4)
	$y - y_1 = m(x - x_1)$	
	$y-0=\frac{\sqrt{2}}{4}(x-(-16))$	✓ subst/verv m ✓ subst point/verv
Ι,	$y = \frac{\sqrt{2}}{4}x + 4\sqrt{2}$	punt √equation/vgl
	4	(3)
(OR/OF	
	$y = \frac{\sqrt{2}}{4}x + c$	II godine Audi
	$y = \frac{1}{4}x + c$	✓ subst/verv m
	$0 = \frac{\sqrt{2}}{4}(-16) + c$	✓ subst point/verv punt
($c = 4\sqrt{2}$	
	$\therefore y = \frac{\sqrt{2}}{4}x + 4\sqrt{2}$	✓ equation/vgl
		(3)
		[27]

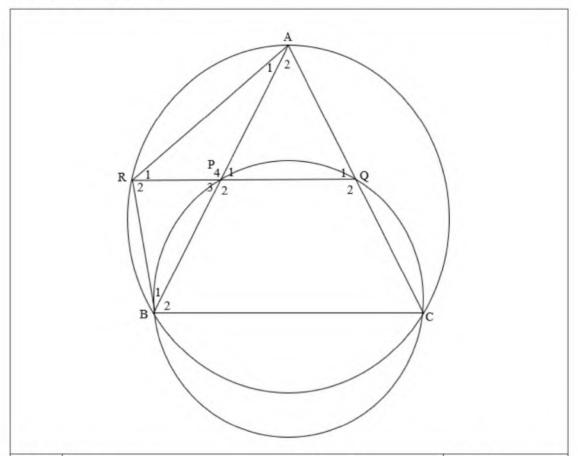

5.2.1	$ \sqrt{4^{\sin 150^{\circ}} \cdot 2^{3\tan 225^{\circ}}} $ $ = \sqrt{(2^{2})^{\sin 30^{\circ}} \cdot 2^{3\tan 45}} $ $ = \sqrt{2^{2(\frac{1}{2})} \cdot 2^{3(1)}} $ $ = \sqrt{2 \cdot 2^{3}} $ $ = \sqrt{16} $ $ = 4 $	✓ sin 30° ✓ tan 45° ✓ special values/ spesiale waardes ✓ simpl/vereenv ✓ answer/antw (5)
5.2.2	$\frac{\tan(180^\circ + x)\cos x}{\sin(180^\circ + x)\cos x - \cos(540^\circ + x)\cos(90^\circ + x)}$ $= \frac{(\tan x)(\cos x)}{(-\sin x)(\cos x) - (-\cos x)(-\sin x)}$ $= \frac{\frac{\sin x}{\cos x}.\cos x}{-\sin x\cos x - \cos x\sin x}$ $= \frac{\sin x}{-2\sin x\cos x}$ $= -\frac{1}{2\cos x}$	$ √\tan x $ $ √-\sin x $ $ √-\cos x $ $ √-\sin x $ $ √\sin x $ $ \cos x $ $ √\operatorname{answer}/\operatorname{antw}$
5.3	$ \frac{1-\cos 2x - \sin x}{\sin 2x - \cos x} $ $ = \frac{1-(1-2\sin^2 x) - \sin x}{2\sin x \cos x - \cos x} $ $ = \frac{1-1+2\sin^2 x - \sin x}{2\sin x \cos x - \cos x} $ $ = \frac{2\sin^2 x - \sin x}{2\sin x \cos x - \cos x} $ $ = \frac{\sin x(2\sin x - 1)}{\cos x(2\sin x - 1)} $ $ = \frac{\sin x}{\cos x} $ $ = \tan x $	√ cos 2x expansion/ uitbrei √ sin 2x expansion/ uitbrei ✓ simpl/vereenv ✓ factors/faktore

✓ rearrange terms/ herrangskik terme ✓ cos identity/
The second secon
identiteit ✓ 2 nd quadrant/ kwadrant ✓ equation/vgl
✓1 st quadrant/ kwadrant
√75° √45°

QUESTION/VRAAG 6


6.1	a=2 and $b=1$	✓ value/waarde a ✓ value/waarde b (2)
6.2.1	$2\sin x - \cos x = 0$ $2\sin x = \cos x$ $\frac{\sin x}{\cos x} = \frac{1}{2}$ $\tan x = \frac{1}{2}$ $x = 26,57^{\circ}$	$ \checkmark \tan x = \frac{1}{2} $ $ \checkmark \text{answer/antw} $ (2)
6.2.2	$x \in [0^{\circ}; 180^{\circ}]$	✓interval ✓notation/notasie (2)
6.2.3	$y = 2^{2f(x)-1}$ $y \in \left[-\frac{1}{2}; 7\right]$	✓✓answer/antw (2)


[8]



7.4	In $\triangle BDC : BD^2 = (4x)^2 - (3x)^2$	
	$BD^2 = 16x^2 - 9x^2$	
	$BD^2 = 7x^2$	$\checkmark BD^2 = 7x^2$
	$7x^2 = 4y^2 \sin^2 \theta + 4x^2 \sin^2 \alpha$	√equating
	$7x^{2} - 4x^{2} \sin^{2} \alpha = 4y^{2} \sin^{2} \theta$ $x^{2} (7 - 4\sin^{2} \alpha) = 4y^{2} \sin^{2} \theta$	✓simpl/vereenv
	$x^2 = \frac{4y^2 \sin^2 \theta}{(7 - 4\sin^2 \alpha)}$	
	$x = \sqrt{\frac{4y^2 \sin^2 \theta}{7 - 4\sin^2 \alpha}}$	(3)
	OF/OR	
	$CD^2 = BD^2 + BC^2$	
	$16x^2 = 4y^2 \sin^2 \theta + 4x^2 \sin^2 \alpha + 9x^2$	✓subst/verv in
	$16x^2 - 9x^2 - 4x^2\sin^2\alpha = 4y^2\sin^2\theta$	Pyth
	$7x^2 - 4x^2\sin^2\alpha = 4y^2\sin^2\theta$	
	$x^2 \left(7 - 4\sin^2\alpha\right) = 4y^2 \sin^2\theta$	✓simpl/vereenv
	$x^2 = \frac{4y^2 \sin^2 \theta}{7 - 4\sin^2 \alpha}$	\checkmark i.t.o x^2
	$x = \sqrt{\frac{4y^2 \sin^2 \theta}{7 - 4\sin^2 \alpha}}$	
	$\sqrt{7-4\sin^2\alpha}$	(3)

9.2	$M = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$		
9.2.1	$\hat{\mathbf{B}} = \hat{\mathbf{M}}_1 = x$ \(\sigma^2 \mathrm{s} \text{ in the same segment}	√S √R	
	$\hat{B} = \hat{R}_3 = x$ alt \angle 's, TR \square BS	√S √R	
	$\hat{\mathbf{B}} = \hat{\mathbf{R}}_1 = x$ tan-chord theorem	✓S ✓R	
9.2.2	Equal chords equal circumf ∠'s	√R	(6)
	Equal chords equal chedhii Z 3		(1)
9.2.3(a)	$\hat{A}_1 = x + y$ ext \angle of Δ	√S/R	(1)
9.2.3(b)	$\hat{N}_1 = x + y$ ext \angle of Δ	√S/R	
9.2.4	In ΔSAR and ΔKNR		(1)
7.2.4	(i) $\hat{R}_1 = \hat{R}_3$ both = x	√S	
	(ii) $\hat{A}_1 = \hat{N}_1$ both = $x + y$	√S	
	(iii) $\hat{K}_2 = \hat{S}$ sum \angle 's of Δ	√S	
	∴Δ ΔSAR III ΔKNR ∠∠∠		(3)
	OR/OF		
	OROF		
	In ΔSAR and ΔKNR	/0	
	(i) $\hat{R}_1 = \hat{R}_3$ both = x	√S	
	(ii) $\hat{A}_1 = \hat{N}_1$ both = $x + y$	√S	
	∴∆SAR III ∆KNR ∠∠∠	✓R	(3)
9.2.5	$\hat{K}_2 = \hat{S}$ $\Delta SAR \parallel \mid \Delta KNR$	√S	(3)
	SAKR is a cyclic quad ext ∠ of quadrilateral OR	√R	
	converse ext ∠ of cyclic quad		(2)
			[19]

10.1	$\hat{\mathbf{P}}_{1} = \mathbf{C}$	ext ∠ of cyclic quad	✓S ✓R
	$\hat{C} = 180^{\circ} - (\hat{R}_1 + \hat{R}_2)$	opp ∠'s of cyclic quad	✓S ✓R
	$\therefore \hat{\mathbf{P}}_1 = 180^\circ - \left(\hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2\right)$		✓method/metode
	$\hat{R}_1 + \hat{R}_2 = 180^{\circ} - (\hat{A}_1 + \hat{B}_2)$	s_1) sum \angle 's of Δ	
	$\therefore \hat{\mathbf{P}}_1 = 180^\circ - \left[180^\circ - \left(\hat{\mathbf{A}}_1 + \hat{\mathbf{B}}_1\right)\right]$		
	$\hat{P}_1 = 180^{\circ} - 180 + (\hat{A}_1 + \hat{A}_2)$	$-\hat{\mathbf{B}}_{t}$	10
	$\therefore \hat{\mathbf{P}}_1 = \hat{\mathbf{A}}_1 + \hat{\mathbf{B}}_1$		(5)

	OR/OF	√S √R
	(2 2)	✓S✓R
	$A\hat{R}B = 180^{\circ} - (\hat{A}_1 + \hat{B}_1)$	√method/metode
	$A\hat{R}B = 180^{\circ} - \hat{C}$	
	$180^{\circ} - (\hat{A}_1 + \hat{B}_1) = 180^{\circ} - \hat{C}$	
	$\hat{C} = \hat{A}_1 + \hat{B}_1$	
	$\hat{\mathbf{C}} = \hat{\mathbf{P}}_1$	(5)
	$\therefore \hat{\mathbf{P}}_1 = \hat{\mathbf{A}}_1 + \hat{\mathbf{B}}_1$	
10.2	In ΔARP and ΔABR	✓ identify/
	(i) $\hat{A} = \hat{A}$ common \angle	identifiseer ∆'s
	(ii) $\hat{P}_1 = \hat{A}_1 + \hat{B}_1$ proven	√S
	$180^{\circ} - \hat{P}_1 = 180^{\circ} - (\hat{A}_1 + \hat{B}_1)$	✓method/metode
	$\therefore \hat{\mathbf{P}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$	
	(iii) $\hat{R}_1 = \hat{B}_1$ sum \angle 's of Δ	The state of the s
	$\therefore \triangle ARP \parallel \mid \triangle ABR \qquad \angle \angle \angle$	✓R
	$\frac{AR}{AR} = \frac{AP}{AR}$ III Δ 's	
	$AB AR AR^2 = AB.AP$	✓S
		(5)
	OR/OF	(4)
	In \triangle ARP and \triangle ABR	
	(i) $\hat{A} = \hat{A}$ common \angle	✓Identify/
	(ii) $\hat{P}_1 = \hat{A}_1 + \hat{B}_1$ proven	identifiseer ∆'s √S
	$180^{\circ} - \hat{\mathbf{P}}_{1} = 180^{\circ} - (\hat{\mathbf{A}}_{1} + \hat{\mathbf{B}}_{1})$	✓ method/metode
	$\therefore \hat{\mathbf{P}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$	metrour
	∴ ∆ARP III ∆ABR ∠∠∠	
	$\frac{AR}{AR} = \frac{AP}{AR}$ III Δ 's	√R
	$AB AR AR^2 = ABAP$	√S