

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

education MPUMALANGA PROVINCE REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS PAPER 2

SEPTEMBER 2023

MARKING GUIDELINES

MARKS: 150

NOTE:

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai aseblief om

CAPS/KABV - Grade/Graad 12 - Marking Guideline/Nasienriglyn

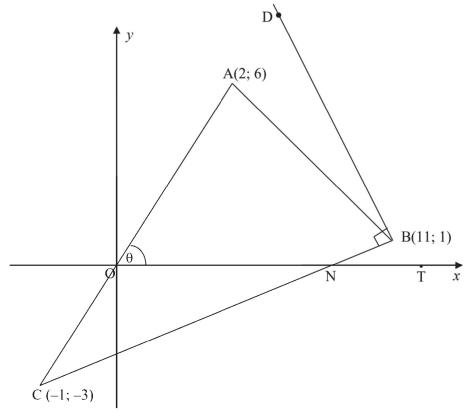
- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a problem is unacceptable.

LET WEL:

- As 'n kandidaat 'n vraag TWEE keer beantwoord het, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord deurgehaal en nie oorgedoen het nie, sien die deurgehaalde antwoord na.
- Volgehoue akkuraatheid is op ALLE aspekte van die nasienriglyn van toepassing.
- Dit is onaanvaarbaar om waardes/antwoorde te veronderstel om 'n probleem op te los.

71	0.2	0.0	0.1	02	02	0.5	07	104	100	1.00	110	111	115	120
/ I	83	88	91	92	92	95	9/	104	108	109	110	111	115	129
													l '	

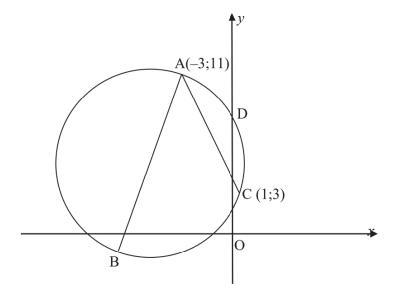
1.1	$\frac{1495}{15} = 99,67$	√√99,67	
			(2)
1.2	$\sigma = 14,06$	√SD	
			(1)
1.3	99,67-14,06=85,61	√boundary	
	$\frac{2}{15} \times 100 = 13,33\%$	$\sqrt{\frac{2}{15}}$	
		√answer	(3)
1.4.1	96,67	√answer	
			(1)
1.4.2	14,06	√answer	
			(1)
			[8]



CAPS/KABV-Grade/Graad~12-Marking~Guideline/Nasienriglyn

2.1.1	True	✓ answer
		(1)
2.1.2	Positively skewed / Skewed to the right	✓ answer
		(1)
2.1.3	Range for company A = $800 - 200 = 600$	
	Range for company $B = 600 - 100 = 500$	✓ both ranges
	Biggest range: Company A	✓Company A
		(2)
2.1.4	$20 \times 75\% = 15$ workers	√ 75%
		✓ 15 workers
		(2)
2.2.1	y = 5965, 51 - 2,93x	✓ 5329,84
		✓ -2,61
		✓ equation
		(3)
2.2.2	r = -0.49	✓
		(1)
2.2.3	y = 5965, 51 - 2,93(2018)	✓ prediction
	= 52,77	
	The correlation coefficient is moderate thus the value is fairly reliably	✓ answer + reason
	predicted.	(2)
		[12]
		[12]

CAPS/KABV - Grade/Graad 12 - Marking Guideline/Nasienriglyn

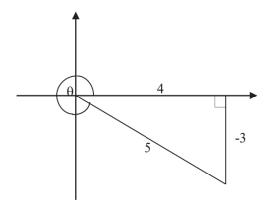


3.1.1	N:(x;0)	✓ subst into gradient
	0 - (-3) 1	formula
	$m_{NC} = \frac{0 - (-3)}{x - (-1)} = \frac{1}{3}$	
	x + 1 = 9	
	x = 8	✓ answer (2)
	OR	
	$y-(-3)=\frac{1}{3}(x-(-1))$	✓ subst into equation
	$y = \frac{1}{3}x - \frac{8}{3}$	
	For $y = 0$: $x = 8$	✓ answer

3.1.2	$\tan \theta = 3$	√substitution
	$\theta = 71,565^{\circ}$	√θ
	1	
	$\tan B\hat{N}T = \frac{1}{3}$	✓substitution
	$B\hat{N}T = 18,434^{\circ}$	✓ BÑT
	$\hat{C} = 71,565^{\circ} - 18,434^{\circ}$	
	= 53,13°	✓ answer
	Accept $\hat{C} = 53,14^{\circ}$	(5)
3.2	y-6=3(x-2)	✓substitution
	y = 3x	✓ equation (2)
3.3	$m_{\perp} = -3$	$\checkmark m_{\perp} = -3$
	y-1=-3(x-11)	✓ equation
	y = -3x + 34	Cquation
	3x = -3x + 34	(aattina aassatiana
	6x = 34	✓ setting equations equal
	$x = \frac{17}{3} = 5,67$	✓ value of x
	$y = 3\left(\frac{17}{3}\right) = 17$	\checkmark value of y (5)
		[14]

4.1	$m_{AC} = \frac{11-3}{-3-1} = \frac{8}{-4} = -2$	✓ gradient of AC.
	$mdpt_{AC} = (-1;7)$	✓Midpt AC
	$y-7=\frac{1}{2}(x-(-1))$	✓⊥gradient and subst
	$y = \frac{1}{2}x + \frac{15}{2}$	✓ equation (4)
4.2	$\frac{1}{2}x + \frac{15}{2} = 3x + 20$	✓ set equations equal
	-2.5x = 12.5	
	x = -5	\checkmark solve x
	y = 3(-5) + 20 = 5 $\therefore \text{centre}(-5;5)$	\checkmark solve y (3)
4.3	radius = $\sqrt{(-5-(-3))^2+(5-11)^2}$	✓ substitution in formula
	$=\sqrt{40}=2\sqrt{10}$	√radius
	diameter = $4\sqrt{10}$ units	√ diameter
	= 12,65	(3)
4.4	$(x+5)^2 + (y-5)^2 = 40$	$\checkmark (x+5), (y-5)$ $\checkmark 40$ (2)
	- h A 4	

CAPS/KABV-Grade/Graad~12-Marking~Guideline/Nasienriglyn

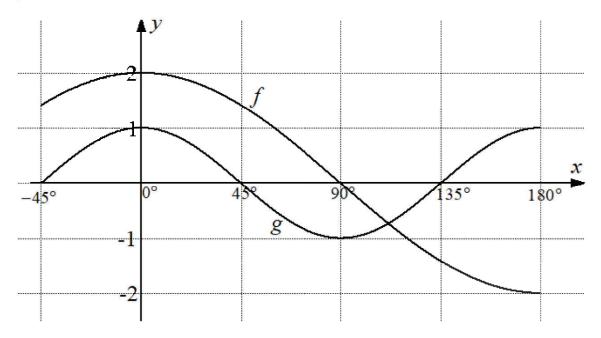

4.5	$m_{rad} = \frac{11-5}{-3-(-5)} = 3$	√gradient	
	$m_{\text{tan}} = -\frac{1}{3}$		
	$y-11 = -\frac{1}{3}(x-(-3))$	✓ subst in form	
	$y = -\frac{1}{3}x + 10$	√ equation	
	$(0;p): p = -\frac{1}{3}(0) + 10$	✓ value of p	
	p = 10	(4	1)
4.6	$(x+2)^2 + (y-7)^2 = (\sqrt{10})^2$	$\sqrt{(x+2)}$	\neg
	$(x+2)^2 + (y-7)^2 = 10$	$\begin{array}{c} \checkmark (y - 7) \\ \checkmark 10 \end{array} \tag{3}$)
4.7	Centres: (2; 3) and (-5; 5)		
7.7	Distance between centres = $\sqrt{(2-(-5))^2+(3-5)^2}$	✓ subst of centres	
	$=\sqrt{53}=7,28$	√distance	
	Sum of radii = $2 + 2\sqrt{10} = 8,32$	✓Sum of radii	
	Distance between centres < Sum of radii		
	∴ They will intesect.	✓ conclusion (4	1)
		[23	5]

CAPS/KABV – Grade/Graad 12 – Marking Guideline/Nasienriglyn

QUESTION 5

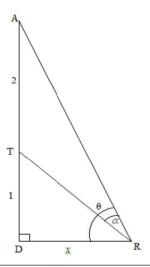
5.1

5.1.1	$(-3)^2 + 4^2 = r^2$	
	$r^2 = 25$	\checkmark value of r
	$r = 5$ $\sin \theta = \frac{-3}{5}$	✓ answer (2)
5.1.2	$\cos 2\theta = \cos^2\theta - \sin^2\theta$	√expansion
	$= \left(\frac{4}{5}\right)^2 - \left(\frac{-3}{5}\right)^2$	✓substitution
	$=\frac{16}{25}-\frac{9}{25}$	✓ answer (3)
	$=\frac{7}{25}$	
5.1.3	$\cos(\theta + 30^{\circ}) = \cos\theta\cos 30^{\circ} - \sin\theta\sin 30^{\circ}$	√expansion
	$= \left(\frac{4}{5}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{-3}{5}\right) \left(\frac{1}{2}\right)$	✓substitution
	$=\frac{4\sqrt{3}+3}{10}$	✓ answer (3)
5.2	$(4\sin\alpha)^2 + (4\cos\alpha)^2$ $= 16\sin^2\alpha + 16\cos^2\alpha$	√simplification
	$= 16\left(\sin^2\alpha + \cos^2\alpha\right)$ $= 16(1) = 16$	√answer (2)



CAPS/KABV-Grade/Graad~12-Marking~Guideline/Nasienriglyn

	-:-(2+ 200)	
5.5	$\sin(3x + 20^{\circ}) = \cos x$ $\sin(3x + 20^{\circ}) = \sin(90^{\circ} - x)$ $3x + 20^{\circ} = 90^{\circ} - x + 360^{\circ}k k \in \mathbb{Z}$ $4x = 70^{\circ} + 360^{\circ}k$ $x = 17,5^{\circ} + 90^{\circ}k$	$√ \sin(90-x)$ $√ 3x + 20° = 90° - x + 360°k \ k ∈ z$ $√ x = 17,5° + 90°k$
	OR $3x + 20^{\circ} = 180^{\circ} - (90^{\circ} - x) + 360^{\circ}k k \in \mathbb{Z}$ $3x + 20^{\circ} = 180^{\circ} - 90^{\circ} + x + 360^{\circ}k$	$\sqrt{3x + 20^{\circ} = 180^{\circ} - (90^{\circ} - x) + 360^{\circ}k}$ $\sqrt{2x} = 70^{\circ} + 360^{\circ}k$
	$2x = 70^{\circ} + 360^{\circ}k$ $x = 35^{\circ} + 180^{\circ}k$ OR	$\sqrt{2x} = 70^{\circ} + 300^{\circ} k$ $\sqrt{x} = 35^{\circ} + 180^{\circ} k$ (6)
	$\sin(3x + 20^{\circ}) = \cos x$ $\cos[90^{\circ} - (3x + 20^{\circ})] = \cos x$ $-3x + 70^{\circ} = x + 360^{\circ}k k \in \mathbb{Z}$	$\sqrt{\cos[90^{\circ} - (3x + 20^{\circ})]}$ $\sqrt{-4x} = -70^{\circ} + 360^{\circ}k$
	$-4x = -70^{\circ} + 360^{\circ}k$ $x = 17,5^{\circ} + 90^{\circ}k$ OR	$\checkmark x = 17,5^{\circ} + 90^{\circ}k$
	$-3x + 70^{\circ} = -x + 360^{\circ}k k \in \mathbb{Z}$ $-2x = -70^{\circ} + 360^{\circ}k$ $x = 35^{\circ} + 180^{\circ}k$	√-3x+70° = -x+360°k k∈z $√-2x = -70°+360°k$ $√x = 35°+180°k$
		[29]

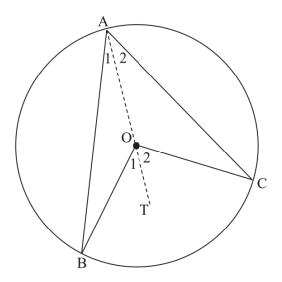


6.1	180°	✓answer	(1)
6.2		✓ critical values ✓ notation	(1)
6.3	Range of g: $y \in [-1; 1]$ Range of 3g: $y \in [-3; 3]$ Range of $y = 3g(x) - 1$: $-4 \le y \le 2$ or $y \in [-4; 2]$	✓ critical values ✓ notation	(2)
6.4	$2\cos x = \frac{1}{2}$ $\cos x = \frac{1}{4}$ $x = 75,5^{\circ}$	✓ equation $ ✓ x = 75,5^{\circ} $	
	$-45^{\circ} \le x \le 75,5^{\circ}$	✓ critical values ✓ notation	(4)
6.5	$ \frac{1}{2}\cos^2 x - \frac{1}{4} $ $ = \frac{1}{4}(2\cos^2 x - 1) $ $ = \frac{1}{4}(\cos 2x) $ $ = \frac{1}{4}(-1) $	✓ factor ✓ double angle	
	$=\frac{1}{4}(-1)$	\checkmark min of cos2x	
	$=-\frac{1}{4}$	✓answer	(4)

CAPS/KABV - Grade/Graad 12 - Marking Guideline/Nasienriglyn

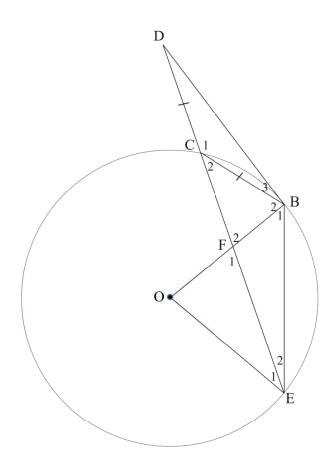
[13]

7.1	$T \hat{R} D = \theta - \alpha$ $\cos(\theta - \alpha) = \frac{x}{TR}$ $TR = \frac{x}{\cos(\theta - \alpha)}$	✓ TRD ✓ cos definition
	$TR = \frac{\pi}{\cos(\theta - \alpha)}$	(2)
7.2	$\hat{A} = 90^{\circ} - \theta$ $\frac{TR}{\sin(90^{\circ} - \theta)} = \frac{AT}{\sin \alpha}$ $\frac{TR}{\cos \theta} = \frac{2}{\sin \alpha}$ $TR = \frac{2\cos \theta}{\sin \alpha}$ $\frac{x}{\cos(\theta - \alpha)} = \frac{2\cos \theta}{\sin \alpha}$ $x = \frac{2\cos \theta \cos(\theta - \alpha)}{\sin \alpha}$	✓ x ✓ TR ✓ Subst in area-rule ✓ answer (4)



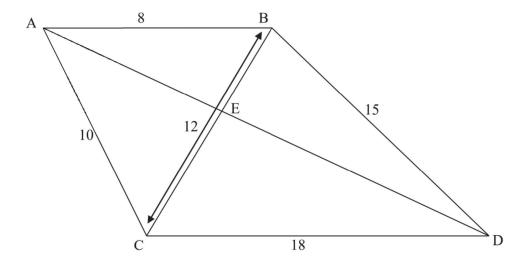
CAPS/KABV-Grade/Graad~12-Marking~Guideline/Nasienriglyn

$x = \frac{2\cos 68, 33\cos(68, 33 - 28^\circ)}{\sin 28^\circ}$	
=1,1992	
$TR = \frac{1,1992}{\cos(\theta - \alpha)}$	✓ x
=1,5730	✓ TR
$\hat{A} = 21,67^{\circ}$	
$A\hat{T}R = 130,33^{\circ}$	✓ subst in area formula
Area $\triangle ATR = \frac{1}{2}(2)(1,5730)\sin 130,33^{\circ}$ = 1,1992	
=1,1992 = 1,20 units ²	✓answer (4)
	[10]



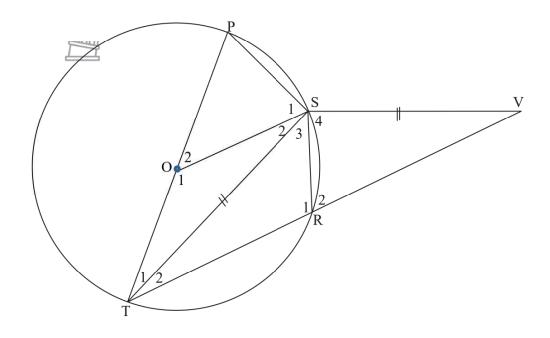
CAPS/KABV-Grade/Graad~12-Marking~Guideline/Nasienriglyn

8.1	Draw line from A through O to T	√ construction
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	$\hat{A}_1 = \hat{B} = x \ (\angle$'s opp = sides)	✓S/R
	, , , , , , , , , , , , , , , , , , ,	✓ S/R
	$O_1 = 2x (ext \angle \text{ of } \Delta)$	
	similarly $\hat{O}_2 = 2y$	√S
	$\stackrel{\wedge}{\mathrm{BOC}} = 2x + 2y = 2(x+y)$	√deduction
	$\therefore \mathring{BOC} = 2 \times \mathring{BAC}$	(5)



8.2

8.2.1	$\hat{\mathbf{D}} = x \ (\angle \ opp = sides)$	√S √R
	$\hat{E}_2 = x$ (tan-chord theorem)	\checkmark S \checkmark R (4)
8.2.2	$\hat{\mathbf{C}}_2 = 2x \ \left(\mathbf{ext} \angle \ of \ \Delta \right)$	✓S/R
	$2\hat{C}_2 = E\hat{O}B = 4x \ (\angle \text{at centre} = 2 \times \angle \text{ at circumf})$	✓S ✓R (3)
8.2.3	$\hat{OBD} = 90^{\circ} (\tan \perp rad)$	√S
	$\hat{\mathbf{B}}_2 = 90^{\circ} - x$	✓R (2)
8.2.4	$\hat{OBD} = 90^{\circ} (\tan \perp rad)$	
	$\hat{F}_2 = 180^\circ - x - O\hat{B}D \text{ (sum } \angle s \Delta)$	√S √S
	$\hat{F}_2 = 90^{\circ} - x$	✓S/R
	$\therefore BC = FC (opp \angle's =)$	(3)
	$\therefore DC = BC = FC$	[17]



9.1	In \triangle BCA and \triangle CDB	
	$\frac{BC}{CD} = \frac{12}{18} = \frac{2}{3}$	√ S
		, 3
	$\frac{AB}{BC} = \frac{8}{12} = \frac{2}{3}$	√S
		√ S
	$\frac{AC}{DB} = \frac{10}{15} = \frac{2}{3}$, 3
	Δ BCA Δ CDB (sides in proportion)	\checkmark S/R (4)
9.2	^ ^	√S
	$ABC = BCD (\Delta BCA \parallel \Delta CDB)$	
	$\therefore AB \parallel CD (alt \angle s =)$	✓R (2)
9.3	In ΔABE and ΔDCE:	
7.5		
	$A \hat{B}C = B \hat{C}D \text{ (proven)}$	
	$A \stackrel{\circ}{E} B = C \stackrel{\circ}{E} D$ (vertically opp \angle)	
	$\triangle ABE \parallel \triangle DCE (\angle \angle \angle)$	✓ ∆ABE ∆DCE
		$\checkmark \frac{AB}{DC} = \frac{BE}{CE}$
	$\frac{AB}{DC} = \frac{BE}{CE} \qquad (\Delta's)$	DC CE
	$\frac{8}{18} = \frac{x}{12 - x}$	8 x
		$\checkmark \frac{8}{18} = \frac{x}{12 - x}$
	8(12-x)=18x	
	96 - 8x = 18x	
	96 = 26x	
	x = 3,69	
	CE = 8,31	\checkmark CE = 8,31
	MANA SA EVAM	(4)

CAPS/KABV - Grade/Graad 12 - Marking Guideline/Nasienriglyn

	[10]	

10.1	$\hat{PST} = 90^{\circ} \ (\angle \text{in semi-circle})$	✓S ✓R
	()	(2)
10.2	$\hat{T}_1 = \hat{T}_2$ (ST is a bisector)	✓ S
	$\hat{T}_2 = \hat{V} (\angle \text{opp} = \text{sides})$	✓ S
	$\hat{T}_1 = \hat{V}$	
	$\hat{R}_2 = \hat{P}$ (ext \angle of cyclic quad)	✓S ✓R
	$\hat{S}_4 = P\hat{S}T = 90^{\circ} (\text{sum } \angle \text{ of } \Delta)$	\checkmark S + R
		(5)
10.3	ΔTSO ΔTVS	
	$\hat{\mathbf{T}}_1 = \hat{\mathbf{T}}_2 (ST \text{ is a bisector})$	✓ S
	$\hat{\mathbf{S}}_2 = \hat{\mathbf{V}} = \begin{pmatrix} both = \hat{T}_1 \end{pmatrix}$	✓ S
	$\hat{\mathbf{O}}_1 = T \hat{\mathbf{S}} \mathbf{V} (3rd \angle \Delta)$	
	Δ TSO Δ TVS $(\angle\angle\angle)$	✓ S/ R
	, , ,	(3)

CAPS/KABV-Grade/Graad~12-Marking~Guideline/Nasienriglyn

10.4	$\frac{TS}{TV} = \frac{OS}{VS} \qquad \Delta TSO \parallel \mid \Delta TVS \mid (\angle \angle \angle)$	✓ S
	TS.VS = OS.TV	✓ S
	but $TS = VS$ given	
	and $OS = \frac{1}{2}PT$ both radii	✓S+R
	$\therefore VS.VS = \frac{1}{2}PT.TV$	✓substitution
	$\therefore 2VS^2 = PT.TV$	(4)
		[14]

TOTAL: 150

