

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

GRADE 12

MATHEMATICS

GRADE 12

MOCK EXAM

PAPER 2

18 AUGUST 2023

MARKS: 150

DURATION: 3 HOURS

This question paper consists of 15 pages.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless otherwise stated.
- 7. If necessary, round off answers to TWO decimal places, unless stated otherwise

The speeds, in kilometres per hour, of cyclists that passed a point on the route of the Ironman Race were recorded and summarised in the table below:

Speed (km/h)	Frequency (f)	Cumulative Frequency
$0 < x \le 10$	10	10
$10 < x \le 20$		30
$20 < x \le 30$	45	
$30 < x \le 40$	72	
$40 < x \le 50$		170

- 1.1 Complete the above table in the ANSWER BOOK provided. (2)
- 1.2 Make use of the axes provided in the ANSWER BOOK to draw a cumulative frequency curve for the above data. (3)
- 1.3 Indicate clearly on your graph where the estimates of the lower quartile (Q1) and median (M) speeds can be read off. Write down these estimates. (2)
- 1.4 Draw a box and whisker diagram for the data. Use the number line in the ANSWER BOOK.(2)
- 1.5 Use your graph to estimate the number of cyclists that passed the point with speeds greater than 35 km/h. (1)

[10]

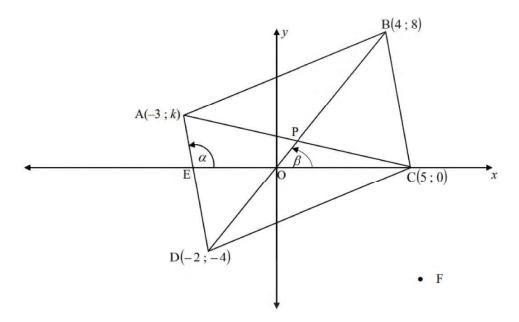
QUESTION 2

During the month of June patients visited a number of medical facilities for treatment.

The table shows the number of patients treated on certain dates during the month of June

Dates in the month of June	3	5	8	12	15	19	22	26
Number of patients treated	270	275	376	420	602	684	800	820

- 2.1 On **DIAGRAM SHEET 2**, draw a scatter plot of the given data. (3)
- 2.2 Determine the equation of the least squares regression line of patients treated (y) against date (x). (3)
- 2.3 Estimate how many patients have been treated on the 24th of June. (2)
- 2.4 Draw the least squares regression line on the grid on DIAGRAM SHEET 2. (3)

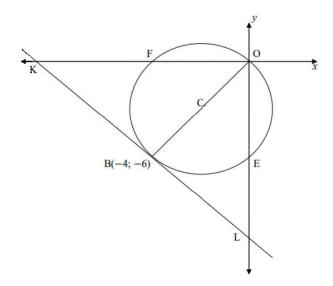


- 2.5 Calculate the correlation coefficient of the data. Comment on the strength of the relationship between the variables.(3)
- 2.6 Given that the mean for patients treated on certain dates is 528,63 calculate how many patients were within one deviation of the mean (3)

[17]

QUESTION 3

In the diagram below, A (-3; k), B(4; 8), C(5; 0) and D (-2; -4) are vertices of the parallelogram ABCD. Diagonals AC and BD bisect each other at P. The angles of inclination of AD and BD are α and β respectively. AD cuts the x-axis at E. F is a point in the fourth quadrant.



- 3.1 Determine the gradient of BC. (2)
- 3.2 If the distance between points A(-3; k) and B(4; 8) is 65, calculate the value of k. (4)
- 3.3 Prove, using analytical geometry methods, that $BP \perp AC$. (3)
- 3.4 Calculate the coordinates of F if it is given that ACFD is a parallelogram. (2)
- 3.5 Calculate the size of \hat{EDO} (correct to ONE decimal place). (6)
- 3.6 Calculate the area of $\triangle ADC$. (4)

[21]

4. A circle with centre at C passes through the origin, O, and also intersects the x-axis at F and the y-axis at E. The tangent to the circle at B (4; 6) intersects the x-axis at K and the y-axis at L.

- 4.1 Calculate the length of the radius of the circle. (3)
- 4.2 Determine the equation of the circle in the form $(x-a)^2 + (y-b)^2 = r^2$. (4)
- 4.3 What type of a triangle is $\triangle OBL$? Give reason for your answer. (2)
- 4.4 Determine the equation of the tangent KL. (4)
- 4.5 Determine the co-ordinates of E. (2)
- 4.2.6 Determine whether EF is a diameter of the circle. Show all working. (5)

[20]

QUESTION 5

5.1 If $\tan 58^{\circ} = m$, determine the following in terms of m without using a calculator.

$$5.1.1 \sin 58^{\circ}$$
 (2)

$$5.1.2 \sin 296^{\circ}$$
 (3)

$$5.1.3 \cos 2^{\circ}$$
 (3)

5.2 If $5 \tan \theta + 2\sqrt{6} = 0$ and $0^{\circ} < \theta < 270^{\circ}$, determine with the aid of a sketch and without using the calculator, the value of :

5.2.1
$$\sin \theta$$
 (2)

$$5.2.2 \cos \theta$$
 (1)

5.1.3
$$\frac{14\cos\theta + 7\sqrt{6}\sin\theta}{\cos(-240^{\circ})\tan 225^{\circ}}$$
 (4)

[15]

QUESTION 6

5.1 Determine the value of
$$\frac{\cos(180^{\circ} + x) \cdot \tan(360^{\circ} - x) \cdot \sin^{2}(90^{\circ} - x)}{\sin(180^{\circ} - x)} + \sin^{2} x$$
 (6)

5.2.1 Prove the identity:
$$\cos(A-B) - \cos(A+B) = 2\sin A \sin B$$
 (3)

5.2.2 Hence calculate, without using a calculator, the value of

$$\cos 15^{\circ} - \cos 75^{\circ} \tag{4}$$

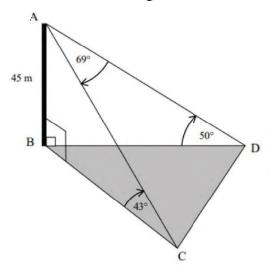
5.3 Find the value of $\tan \theta$, if the distance between $A(\cos \theta; \sin \theta)$ and B(6; 7) is $\sqrt{86}$.

[17]

QUESTION 7

Consider:
$$f(x) = \cos(x - 45^\circ)$$
 and $f(x) = \tan \frac{1}{2}x$ for $x \in [-180^\circ; 180^\circ]$

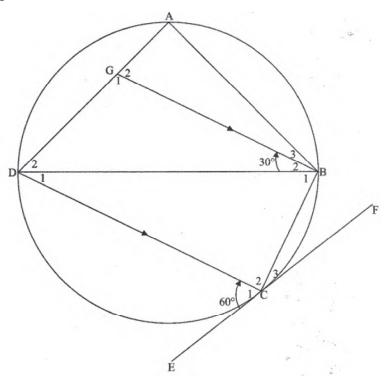
- 6.1 Use the grid provided to draw sketch graphs of f and g on the same set of axes for $x \in [-180^{\circ}; 180^{\circ}]$. Show clearly all the intercepts on the axes, the coordinates of the turning points and the asymptotes. (6)
- 6.2 Use your graphs to answer the following questions for $x \in [-180^{\circ}; 180^{\circ}]$


6.2.1 Write the solutions of
$$\cos(x-45^\circ)=0$$
 (2)

- 6.2.2 Write down the equations of asymptote(s) of g. (2)
- 6.2.3 Write down the range of f. (1)
- 6.2.4 How many solutions exist for the equation $\cos(x-45^\circ) = \tan\frac{1}{2}x$? (1)
- 6.2.5 For what value(s) of x is f(x)g(x) > 0? (3)

[15]

In the figure below Thabo is standing at a point A on top of building AB that is 45 m high. He observes two cars at C and D respectively. The cars at C and D are in the same horizontal plane as B. The angle of elevation from C to A is 43° and the angle of elevation from D to A is 50° and $C \stackrel{\wedge}{AD} = 69^{\circ}$



- 7.1 Calculate the lengths of AC and AD, correct to 2 decimal places. (4)
- 7.2 Calculate the distance between the two cars, the length of CD. (3)

PROVIDE REASONS FOR ALL YOUR STATEMENTS AND CALCULATIONS IN QUESTION 8, 9 AND 10

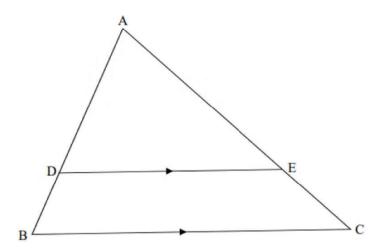
In the diagram, ABCD is a cyclic quadrilateral. G is a point on AD such that BG || CD. ECF is a tangent to the circle at C. BD is a chord of the circle. $\hat{GBD} = 30^{\circ}$ and $\hat{DCE} = 60^{\circ}$

8.1 Calculate, with reasons, the size of:

8.1.1
$$\hat{D}_{1}$$
 (1)

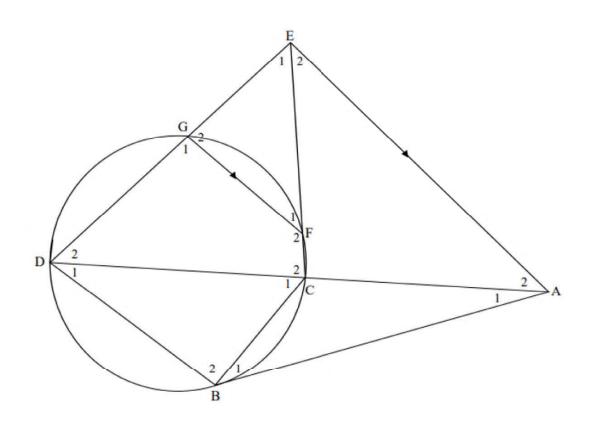
8.1.2
$$\hat{B}_{1}$$
 (2)

$$8.1.3 \qquad \hat{C}_2 \tag{1}$$


$$8.1.4 \qquad \hat{DAB} \tag{2}$$

[8]

9.1 In $\triangle ABC$ below, D and E are points on AB and AC respectively such that


DE | BC. Prove the theorem that states that
$$\frac{AD}{DB} = \frac{AE}{EC}$$
 (6)

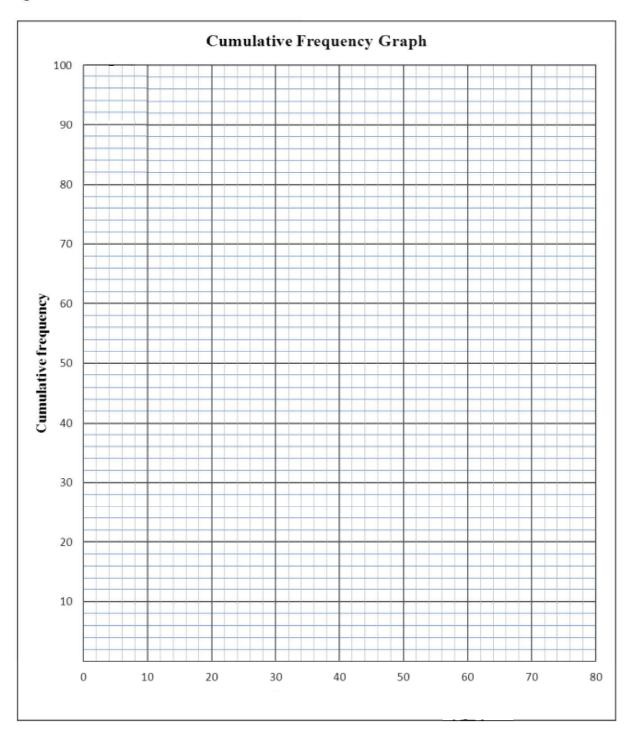
9.2 In the diagram below, DGFC is a cyclic quadrilateral and AB is a tangent to the circle at B. 2 Chords BD and BC are drawn. DG and CF produced meet at E and DC is produced to A. EA | |GF.

9.2.1 Give a reason why
$$\hat{B}_1 = \hat{D}_1$$
 (1)

9.2.2 Prove that
$$\triangle ABC \parallel \mid \triangle ADB$$
. (3)

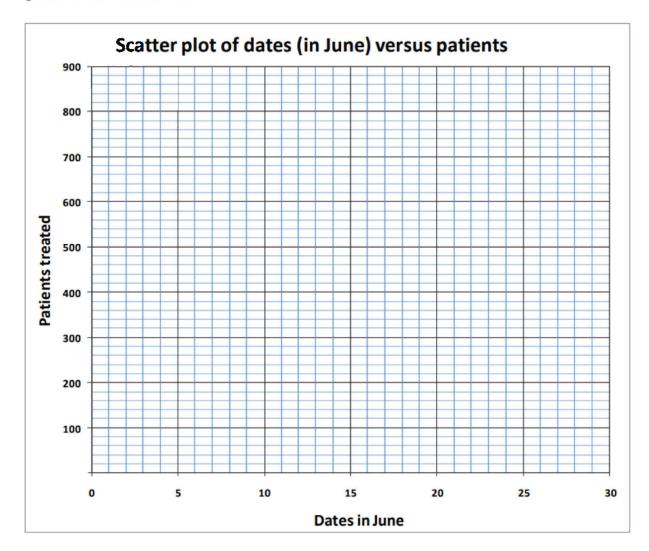
9.2.3 Prove
$$\hat{E_2} = \hat{D_2}$$
 (4)

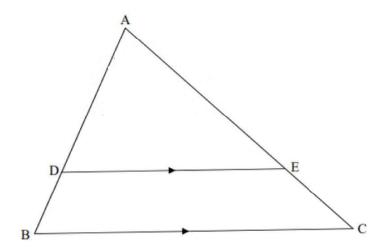
9.2.4 Prove
$$AE^2 = AD \times AC$$
 (4)


[21]

SCHOOL NAME:	_
Name :	Grade 12

Speed (km/h)	Frequency (f)	Cumulative Frequency
$0 < x \le 10$	10	10
$10 < x \le 20$		30
$20 < x \le 30$	45	
$30 < x \le 40$	72	
$40 < x \le 50$		170


QUESTION 1.2


DIAGRAM SHEET 2

QUESTIONS 2.1 AND 2.4

QUESTION 9.1

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$\sum_{i=1}^n 1 = n \qquad \sum_{i=1}^n i = \frac{n(n+1)}{2} \qquad T_n = a + (n-1)d \qquad S_n = \frac{n}{2}(2a + (n-1)d)$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} \quad ; \quad r \neq 1 \qquad S_\infty = \frac{a}{1-r} \; ; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \qquad a^2 = b^2 + c^2 - 2bc \cdot \cos A \qquad area \ \Delta ABC = \frac{1}{2} \ ab \cdot \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha \cdot \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\sin(\alpha - \beta) = \sin(\alpha \cdot \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\sin(\alpha - \beta) = \cos(\alpha \cdot \cos \beta)$$

$$\cos(\alpha - \beta) = \cos(\alpha$$

