

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/
NATIONAL SENIOR CERTIFICATE EXAMINATIONS
SENIORSERTIFIKAAT-EKSAMEN/
NASIONALE SENIORSERTIFIKAAT-EKSAMEN

PHYSICAL SCIENCES: CHEMISTRY (P2)
FISIESE WETENSKAPPE: CHEMIE (V2)

2023

MARKING GUIDELINES/NASIENRIGLYNE

30/5/23

30/5/23

30/5/23

These marking guidelines consist of 20 pages. Hierdie nasienriglyne bestaan uit 20 bladsye.

> DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2023 -05- 3 0

APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

Copyright reserved/Kopiereg voorbehou

MMAunan Mach

Please turn over/Blaai om asseblief

(2)

QUESTION/VRAAG 1

1.1	AVV		(2)
1.2	D✓✓		(2)
1.3	B✓✓		(2)
1.4	C <<		(2)
1.5	C ✓✓	*	(2)
1.6	B		(2)
1.7	C		(2)
1.8	DVV		(2)
1.9	A		(2)
1.10	D✓✓		(2) [20]

QUESTION/VRAAG 2

2.1 Compounds with one or more <u>multiple bonds between C atoms</u> in the hydrocarbon chain. ✓✓ (2 or 0)

Verbindings met een of meer meervoudige bindings tussen C-atome in die koolwaterstofkettings. (2 of 0)

OR/OF

A hydrocarbon with two or more bonds between the C-atoms. 'n Koolwaterstof met twee of meer bindings tussen die C-atome.

OR/OF

Hydrocarbons containing not only single bonds between C atoms.

Koolwaterstowwe wat nie slegs enkelbindings tussen die C-atome bevat nie.

ACCEPT/AANVAAR:

Compounds with one or more <u>double/triple bonds between C atoms</u> in the hydrocarbon chain.

Verbindings met een of meer <u>dubbel/trippelbindings tussen C-atome</u> in die koolwaterstofkettings.

2.2.1 D ✓ (1)

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

2.2.2 2,4-dimethylhexane ✓✓✓

2,4-dimetielheksaan

Marking criteria:

- Correct stem i.e. hexane. ✓
- Substituents (dimethyl) correctly identified. ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas. ✓

Nasienkriteria:

- Korrekte stam d.i. heksaan. √
- Substituente (dimetiel) korrek geïdentifiseer. ✓
- IUPAC-naam heeltemal korrek insluitende nommering, volgorde, koppeltekens en kommas. ✓

(3)

2.2.3 Propan-2-ol /2-propanol ✓✓

Marking criteria:

- Correct stem i.e. propanol. ✓
- IUPAC name completely correct including numbering and hyphens. ✓

Nasienkriteria:

- Korrekte stam d.i. propanol. ✓
- IUPAC-naam heeltemal korrek insluitende nommering en koppeltekens. ✓

(2)

2.2.4 hept-1-ene/1-heptene ✓✓ hept-1-een/1-hepteen

Marking criteria:

- Correct stem i.e. heptene. ✓
- IUPAC name completely correct including numbering and hyphens. ✓

Nasienkriteria:

- Korrekte stam d.i. hepteen. ✓
- IUPAC-naam heeltemal korrek insluitende nommering en koppeltekens. ✓

(2)

2.2.5

Marking criteria/Nasienkriteria

- Correct molecular formula: C₈H₁₈ ✓ Korrekte molekulêre formula: C₈H₁₈
- Correct molecular formula of inorganic reactant and products. ✓ Korrekte molekulêre formule vir die anorganiese reaktant en produkte.
- Balancing/Balansering ✓

 $2C_8H_{18} \checkmark + 25O_2 \rightarrow 16CO_2 + 18H_2O \checkmark$

Notes/Aantekeninge:

- Ignore double arrows and phases. Ilgnoreer dubbelpyle en fases.
- Marking rule 6.3.10/Nasienreël 6.3.10.
- If condensed structural formulae used:/Indien gekondenseerde Max/Maks. 2/3 struktuurformules gebruik:

APPROVED MARKING GUIDELINE PUBLIC EXAMINATION DEPARTMENT OF EDUCATION (3)

BASIC

Marking criteria/Nasienkriteria 2.3.1

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die korrekte konteks uitgelaat is, trek 1 punt af.

Compounds with the same molecular formula but different functional groups/homologous series. </

Verbindings met dieselfde molekulêre formule maar verskillende funksionele groepe/homoloë reekse.

(2)

2.3.2 Marking criteria/Nasienkriteria:

- Functional group for aldehyde correct ✓ Funksionele groep van aldehied korrek
- Whole structure of aldehyde correct Hele struktuur van aldehied korrek
- Functional group for ketone correct ✓ Funksionele groep van ketoon korrek
- Whole structure of ketone correct ✓ Hele struktuur van ketoon korrek

(4)

2.4 Marking criteria

- Calculate the mass/percentage of oxygen. ✓
- Substitute correct mass and molar mass for both C and H into $n = \frac{m}{M}$.
- Substitute correct mass and molar mass for O into $n = \frac{m}{M}$.
- Simplify ratio. (Accept correct empirical formula if no ratio is given.) ✓
- Correct molecular formula. </

Nasienkriteria:

- Bereken die massa/persentasie suurstof. ✓
- Vervang korrekte massa en molêre massa vir beide C en H in $n = \frac{m}{M}$
- Vervang korrekte massa en molêre massa vir O in $n = \frac{m}{M}$.
- Vereenvoudig verhouding. (Aanvaar korrekte empiriese formule indien geen verhouding nie) ✓
- Korrekte molekulêre formule. ✓ ✓

OPT	ION	1/OPS	E1

	C	H	0
Mass / Massa	1,09	0,18	$2 - (1,09 + 0,18)$ \checkmark = 0,73
	$n = \frac{m}{M}$	$n = \frac{m}{M}$	$n = \frac{m}{M}$
Moles /mol	$=\frac{1,09}{12}$	$=\frac{0.18}{1}$	$=\frac{0.73}{16}$
To be 14 like ministry and appropriate and 1000 and	= 0,0908	= 0,18	= 0,046
Simplest ratio Eenvoudigste verhouding	2	4	DY

Empirical formula C₂H₄O Empiriese formule

 $M(C_2H_4O) \times n = 88 (g \cdot mol^{-1})$ 44n = 88

n = 2

Molecular formula of compound X/ Molekulêre formule van verbinding X:

Physical Sciences P2/Fisiese Wetenskappe V2 5 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2023

OPTION	2/OP	TION 2

	С	Н	0
Percentage/Persentasie	54,5	9	36,5 ✓
Moles /mol	$n = \frac{m}{M}$ $= \frac{54,5}{12}$ $= 4,5417$	$n = \frac{m}{M}$ $= \frac{9}{1}$ $= 9$	$n = \frac{m}{M}$ $= \frac{36,5}{16}$ $= 2,28$
Simplest ratio Eenvoudigste verhouding	2	4	1)
Empirical formula Empiriese formule	C ₂ H ₄ O		

$$M(C_2H_4O) \times n = 88 \text{ (g·mol}^{-1})$$

 $44n = 88$
 $n = 2$

Molecular formula of compound X/ Molekulêre formule van verbinding X:

C4H8O2 / /

(6) [**25**]

QUESTION/VRAAG 3

3.1 Marking criteria/Nasienkriteria

If any one of the underlined key phrases in the correct context is omitted, deduct 1 mark. Indien enige van die onderstreepte frases in die korrekte konteks uitgelaat is, trek 1 punt af.

The <u>temperature</u> at which the <u>vapour pressure</u> (of a compound) <u>equals</u> atmospheric pressure. $\checkmark\checkmark$

Die <u>temperatuur</u> waarby die <u>dampdruk</u> (van 'n verbinding) <u>gelyk is aan die</u> <u>atmosferiese druk</u>.

(2)

(4)

3.2 Marking criteria/Nasienkriteria

- Compare compounds in terms of branches/chain lengths/surface area. ✓
 Vergelyk verbindings in terme van vertakkings/kettinglengte/oppervlakarea.
- Compare strengths of IMF's/Vergelyk sterkte van IMK'e.✓
- Compare energy/Vergelyk energie √

Butan-1-ol ✓

- Has a longer chain length./is less branched./has a larger surface area/ contact area. ✓
- Strength of the intermolecular forces is greater./There are more sites for London forces. ✓
- More energy is needed to overcome/break intermolecular forces.
- Het 'n langer kettinglengte./is minder vertak./het 'n groter kontakoppervlak/reaksieoppervlak.√
- <u>Sterkte van die intermolekulêre kragte verhoog./</u>Daar is meer plekke vir Londonkragte. ✓
- Meer energie word benodig om die intermolekulêre kragte te oorkom/breek. √

OR/OF

- 2-methylpropan-1-ol has a shorter chain length./is more branched./ has a smaller surface area/contact area.
- Strength of the intermolecular forces is weaker./There are fewer sites for London forces.
- Lesser energy is needed to overcome/break intermolecular forces.
- 2-metielpropan-1-ol het 'n korter kettinglengte./is meer vertak./het 'n kleiner kontakoppervlak/reaksieoppervlak.
- <u>Sterkte van die intermolekulêre kragte is swakker./</u>Daar is minder plekke vir Londonkragte.
- Minder energie word benodig om intermolekulêre kragte te oorkom/breek.

3.3	Boiling point/Kookpunt ✓	DEPARTMENT OF BASIC EDUCATION	(1)
2.4		PRIVATE BAG X895, PRETORIA 9001	
3.4 3.4.1	S✓	2023 -05- 3 0	(1)
342	D 🗸	APPROVED MARKING GUIDELINE	(1)
0.4.2	STATE OF THE RESIDENCE AND ADDRESS OF THE PARTY OF THE PA	PUBLIC EXAMINATION	(1)

DBE/2023 Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS -- Marking Guidelines/Nasienriglyne 3.4.3 RV (1) 3.5 Propanoic acid/P has the strongest intermolecular forces. ✓ Two sites for hydrogen bonding (which is stronger than other intermolecular forces). OR Most energy needed to separate the chains. Propanoësuur/P het die sterkste intermolekulêre kragte. OF Twee plekke vir waterstofbindings (wat sterker is as die ander intermolekulêre kragte). OF Meeste energie benodig om kettings te skei. (1) [11] QUESTION/VRAAG 4 4.1 4.1.1 Halogenation/Bromination ✓ Halogenering/Brominering (1) 4.1.2 The bromine water/Br₂/solution decolourises./Brown colour disappears. ✓ Die broomwater/Br2/oplossing ontkleur./Bruin kleur verdwyn. OR/OF Bromine water/Br₂/solution changes from <u>brown/reddish to colourless</u>. Broomwater/Br₂/oplossing verander van bruin/rooierig na kleurloos. (1) 4.1.3

Marking criteria/Nasienkriteria

- Functional group correct ✓ Funksionele groep korrek
- Whole structure correct ✓ Hele struktuur korrek

2-chloro-2-methyl ✓ propane ✓ /2-chloro-2-metielpropaan 4.1.4

ACCEPT/AANVAAR:

2-chloromethylpropane / 2-chlorometielpropaan

(2)

(2)

Please turn over/Blaai om asseblief

4.1.5

Marking criteria:

- Cℓ atom on second C atom on compound R ✓
- Whole structure of compound R correct ✓
- React compound R with NaOH(aq)/KOH(aq)/LiOH(aq) OR H₂O ✓
- OH-group replaces Cℓ atom at the same position. ✓
- Whole structure of alcohol correct. ✓
- NaCl(ag)/KCl(ag)/LiCl(ag) OR HCl(ag) ✓ (must correspond to the inorganic reactant used)

Nasienkriteria:

- Cl-atoom op tweede C-atoom van verbinding R ✓
- Hele struktuur van verbinding R korrek ✓
- Reageer verbinding R met NaOH(aq)/KOH(aq)/LiOH(aq) OF H2O ✓
- OH-groep vervang Cf-atoom by dieselfde posisie. ✓
- Hele struktuur van alkohol korrek. ✓
- NaCl(aq)/KCl(aq)/LiCl(aq) OF HCl(aq) ✓

(moet ooreenstem met die anorganiese reaktans gebruik)

Notes/Aantekeninge:

- Accept all inorganic reagents as condensed. / Aanvaar alle anorganiese reagense as gekondenseerd.
- Accept coefficients that are multiples. Aanvaar koëffisiënte wat veelvoude is.
- Any additional reactants and/or products Enige addisionele reaktanse en/of produkte:

Max./Maks.5/6 Max./Maks. 5/6

Incorrect balancing/Verkeerde balansering:

Max./Maks. 3/6

Molecular formulae/Molekulêre formule:

Condensed formulae/Gekondenseerde formule:

Max./Maks. 4/8

Accept/Aanvaar:

EDUCATION

PRIVATE BAG XESS, PRETORIA 0001

APPROVED MARKING GUIDELINE

PUBLIC

EXAMINATION -OH as condensed / -OH as gekondenseerd

Condensed formulae/Gekondenseerde formule:

(6)

Physical	I Sciences P2/Fisiese Wetenskappe V2 9 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne	023
4.1.6	2-methyl√propan-2-ol√/2-methyl-2-propanol 2-metielpropan-2-ol/2-metiel-2-propanol ACCEPT/AANVAAR: Methylpropan 2 ol/ Metiolpropan 2 ol/	(2)
4.1.7	Methylpropan-2-ol/ Metielpropan-2-ol Dehydration/Dehidrasie/Dehidratering ✓	(2)
4.2.1	Esterfication/Condensation ✓	(1)
	Verestering/Esterfikasie/Kondensasie	(1)
4.2.2	Butyl√propanoate ✓ Butielpropanoaat	(2) [18]
QUES	TION/VRAAG 5	
5.1	Initial concentration is 0 (of NO₂)./Concentration increases./ Curve starts at 0. ✓ Beginkonsentrasie is 0 (van NO₂)./Konsentrasie verhoog./Kurwe begin by 0.	
	OR/OF <u>Curve B has an initial concentration</u> and is the reactant as its concentration decreases. <u>Kurwe B het 'n beginkonsentrasie</u> en is die reaktant aangesien sy konsentrasie afneem.	
5.2	True/Waar \checkmark n mol of N ₂ O ₅ forms 2n mol of NO ₂ per unit time. \checkmark n mol N ₂ O ₅ vorm 2n mol NO ₂ per eenheidstyd.	
	OR/OF Gradient of graph for NO ₂ is twice the gradient of graph for N ₂ O ₅ . Gradient van grafiek vir NO ₂ is twee keer die gradient van grafiek vir N ₂ O ₅ . NOTE/LET WEL: If gradients calculated correctly award mark.	
	Indien gradiënte korrek bereken word punt toegeken.	(2)

(4)

5.3.1

Marking criteria/Nasienkriteria:

- Formula: $c = \frac{m}{MV} / n(NO_2) = cV / n(NO_2) = \frac{m}{M} \checkmark$
- Substitute change in concentration. ✓
 Vervang verandering in konsentrasie .
- Substitute M (46) and V (2)./Vervang M (46) en V (2). ✓
- Final correct answer/ Finale korrekte antwoord: 1,84 g √

5.3.2

Marking criteria/Nasienkriteria:

- Substitute the change in concentration into rate formula. ✓ Vervang verandering in konsentrasie in tempo formule.
- Substitute time into the rate formula. I Vervang tyd in tempo formule. ✓
- Use mol ratio/Gebruik molverhouding: rate/tempo(O₂) = ½ rate/tempo(N₂O₅)/ rate/tempo(O₂) = ¼ rate/tempo(NO₂) √
- Final correct answer/Finale korrekte antwoord: 1 x 10⁻⁵ (mol·dm⁻³·s⁻¹) ✓

NOTE/LET WEL

If concentration is converted to moles, final moles per s (mol·s⁻¹) must be converted back to concentration (mol·dm⁻³·s⁻¹). i.e. there must be multiplication and division by 2. If one of these is omitted: $Max.^{2}/_{A}$

Indien konsentrasie omgeskakel is na mol, moet die finale mol per s (mol·s⁻¹) omgeskakel word na konsentrasie (mol·dm⁻³·s⁻¹) d.w.s daar moet vermenigvuldig en gedeel word deur 2. Indien een van hierdie uitgelaat word:

Maks.²/₄

OPTION 1/OPSIE 1

Ave rate/gem tempo =
$$-\frac{\Delta c(N_2O_5)}{\Delta t}$$

= $-\frac{(60 \times 10^{-4} - 200 \times 10^{-4})}{700 (-0)}$
= $2 \times 10^{-5} \text{ (mol·dm}^{-3}\cdot\text{s}^{-1})$

rate(O₂) =
$$\frac{1}{2}$$
 rate(N₂O₅) = $\frac{1}{2}$ (2 x 10⁻⁵) \checkmark
= 1 x 10⁻⁵ (mol·dm⁻³·s⁻¹) \checkmark

OPTION 2/OPSIE 2

Ave rate/gem tempo =
$$\frac{\Delta c(NO_2)}{\Delta t}$$

= $\frac{(280 \times 10^{-4} (-0))}{700 (-0)}$
= $4 \times 10^{-5} \text{ (mol·dm}^{-3} \cdot \text{s}^{-1})$

rate(O₂) =
$$\frac{1}{4}$$
 rate(NO₂) = $\frac{1}{4}$ (4 x 10⁻⁵) \checkmark
= 1 x 10⁻⁵ (mol·dm⁻³·s⁻¹) \checkmark

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

5.4 5.4.1

Marking criteria/Nasienkriteria

- Curve Q must be above the given curve P and have the same shape as the given curve P and the peaks have to correspond. ✓
 Kurwe Q moet bo die gegewe kurwe P wees en moet dieselfde vorm hê as die gegewe kurwe P en die maksimums moet ooreenstem
- Starts at origin and not crossing curve P. ✓
 Begin by oorsprong en nie kruis met kurwe P nie.

(2)

5.4.2 Higher than/Hoër as ✓

- When the concentration of N₂O₅ is higher there are more N₂O₅ particles per unit volume. ✓
- More effective collisions per unit time/second.

 OR

 Higher frequency of effective collisions.
- 'n Hoër konsentrasie van N₂O₅ bevat <u>meer</u> N₂O₅-deeltjies per eenheidsvolume. ✓
- Meer effektiewe botsings per eenheidstyd/sekonde. ✓
 OF

Hoër frekwensie van effektiewe botsings.

PRIVATE BAG X893, PRETOKIA 9801

PRIVATE BAG X893, PRETOKIA 9801

APPROVED MARKING GUIDELINE

PUBLIC EXAMINATION

(3) [16]

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

(2)

(3)

QUESTION/VRAAG 6

6.1 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

When the equilibrium in a closed system is disturbed, the system will re-instate a (new) equilibrium by favouring the reaction that will cancel/oppose the disturbance.

Wanneer die ewewig in 'n geslote sisteem versteur word, sal die sisteem 'n (nuwe) ewewig instel deur die reaksie te bevoordeel wat die versteuring kanselleer/teenwerk.

6.2 6.2.1 $n[H_2(g)] = 0.11 \text{ (mol) } \checkmark$ (1)

6.2.2 $\begin{array}{|l|l|} \hline \textbf{OPTION 1/OPSIE 1} \\ \textbf{n(HI)}_{used/gebruik} = 2\textbf{n}(I_2) \\ &= 2(0,11) \\ \textbf{n(HI)}_{eq} = 1 - 0,22 \\ &= 0,78 \text{ (mol)} \checkmark \\ \hline \end{array} \begin{array}{|l|l|} \hline \textbf{OPTION 2/OPSIE 2} \\ \textbf{K}_c = \frac{[H_2][I_2]}{[HI]^2} \\ \textbf{0,02} = \frac{(0,11)(0,11)}{[HI]^2} \\ \textbf{[HI]} = 0,78 \text{ mol} \cdot dm^{-3} \\ \textbf{n(HI)} = 0,78 \text{ (mol)} \checkmark \end{array}$

6.3 6.3.1 Endothermic/Endotermies ✓ (1)

6.3.2 Kc increased:

- The concentration of the product/H₂(g) and I₂(g) is increased. ✓
 OR: The concentration of the reactant/HI decreases.
- The increase in temperature favoures the forward reaction. ✓
- (According to Le Chatelier's principle) an increase in temperature favours the endothermic reaction. ✓

Kc het verhoog:

- Die konsentrasie van die produkte/H₂(g) en I₂(g) verhoog. ✓
 OF: Die konsentrasie van die reaktanse/HI verlaag.
- 'n Toename in temperatuur bevoordeel die voorwaartse reaksie. ✓
- (Volgens Le Chatelier se beginsel) sal 'n toename in temperatuur die endotermiese reaksie bevoordeel. ✓

PRIVATE BAG X805, FRETORIA 8001

2023 -05- 3 0

APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

6.3.3 POSITIVE MARKING FROM Q6.2/POSITIEWE NASIEN VANAF V6.2

Marking criteria:

- (a) Correct K_c expression (<u>formulae in</u> <u>square brackets</u>). ✓
- (b) Substitution of 0,09 in Kc expression. ✓
- (c) Correct initial moles from 6.2.1 and 6.2.2. ✓
- (d) <u>USING</u> ratio: nHI(g): 2nI₂(g) = 1:2 ✓
- (e) Substitution of concentrations into correct K_c expression. √
- (f) Subtraction [HI]_{ini} − Δ[HI] √
- (g) Substitution of 128 in m = nM. ✓
- (h) Final answer: 80,64 g ✓ (range: 79,36 80,64 g)

Nasienkriteria:

- (a) Korrekte K_c uitdrukking (<u>formules in</u> <u>vierkantige hakies</u>). ✓
- (b) Vervang 0,09 in Kc uitdrukking. ✓
- (c) Aanvanklike mol korrek vanaf 6.2.1 en 6.2.2. ✓
- (d) <u>GEBRUIK</u> verhouding: nHI(g): 2nI₂(g) = 1:2 √
- (e) Vervang konsentrasies in korrekte K_c uitdrukking. ✓
- (f) Verskil: [HI]_{aenv} Δ[HI] √
- (g) Vervang 128 in m = nM. ✓
- (h) Finale antwoord: 80,64 g √ (gebied: 79,36 80,64 g)

OPTION 1/OPSIE 1 $K_c = \frac{[H_2][I_2]}{}$ √ (c) (0,11 and/en 0,78 from 6.2.1 and/en 6.2.2) $0.09 = \frac{(0.11 + x)(0.11 + x)}{0.09}$ $(0.78 - 2x)^2$ x = 0.0775[HI] equilibrium/ewewig = [HI] $_{inl/aanv} - \Delta[HI]$ $= 0.78 - 2(0.0775) \checkmark (f)$ = 0.63, mol·dm⁻³ (0.625) n(HI) = cV=(0.63)(1)OR/OF = 0,63 mol (0,625) m(HI) = cVM $= (0,63)(1)(128) \checkmark (g)$ m(HI) = nM $= 80,64 \text{ g} \checkmark \text{(h)}$ $=(0,63)(128) \checkmark (g)$ $= 80,64 \,\mathrm{g} \,\checkmark\,$ (h)

(8) [**16**]

(2)

	HI.	I ₂	H ₂	
Initial quantity (mol) Aanvanklike hoeveelheid (mol)	0,78	0,11	0,11	✓ (c)
Change (mol) Verandering (mol)	2x	x	х	Ratio 1:
Quantity at equilibrium (mol) Hoeveelheid by ewewig (mol)	0,78 - 2x	0,11 + x	0,11 + x	
Equilibrium concentration	0,78 - 2x	0,11+ x	0,11+ x	
Ewewigskonsentrasie (mol·dm ⁻³)	1	1	1	
$K_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}} \checkmark (a)$ $0, 09 = \frac{(0,11+x)(0,11+x)}{(0,78-2x)^{2}} \checkmark (e)$ $x = 0,0775$	(f)			
$K_{c} = \frac{[H_{2}][I_{2}]}{[HI]^{2}} \checkmark (a)$ (b) $(c) = \frac{(0.11 + x)(0.11 + x)}{(0.78 - 2x)^{2}} \checkmark (e)$ $(c) = \frac{(0.78 - 2x)^{2}}{(0.78 - 2x)^{2}} \checkmark (e)$ $(d) = \frac{(0.78 - 2(0.0775)}{(0.775 - 2(0.0775))} = 0.63 \text{ mol} \cdot \text{dm}^{-3}(e)$ $(d) = \frac{(0.63)(1)}{(0.625 \text{ mol})} = 0.63 \text{ mol} \cdot (0.625 \text{ mol})$ $(d) = 0.63 \text{ mol} \cdot (0.625 \text{ mol})$ $(d) = 0.63 \text{ mol} \cdot (0.625 \text{ mol})$	OR/OF m(HI) = c = (0	VM 0,63)(1)(128 0,64 g √ (h)) √ (g)	

QUESTION/VRAAG 7

OPTION 2/OPSIE 2

7.1 7.1.1 ANY ONE

- A substance whose aqueous solution contains ions. ✓ ✓ (2 or 0)
- Substance that dissolves in water to give a <u>solution that conducts</u> electricity.
- · A substance that forms ions in water/forms ions when molten.

ENIGE EEN:

- 'n Stof waarvan die oplossing ione bevat. ✓✓ (2 of 0)
- 'n Stof wat in water oplos om 'n oplossing te vorm wat elektrisiteit gelei.
- 'n Stof wat jone vorm in water/jone vorm wanneer gesmelt.

PRIVATE BAG X555, PRETORIA 6001

APPROVED MARKING GUIDELINE

Copyright reserved/Kopiereg voorbehou

PUBLIC EXAMINATION base turn over/Blaai om asseblief

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

7.1.2 A V

H₂SO₄ is diprotic./Donates more than one mole of H⁺ ions per mole of acid ✓ (and both acids are of the same concentration)./H₂SO₄ has a higher K₈ value. H₂SO₄ is diproties./Skenk meer as een mol H⁺ ione per mol suur (en beide sure het dieselfde konsentrasie)/ H₂SO₄ het 'n hoër K₈-waarde.

OR/OF

It ionises to produce more than one mole of protons/ H^+ ions for each mole of H_2SO_4 ./ H_2SO_4 has a higher K_a value.

Dit ioniseer om meer as een mol protone/ H+-ione vir elke mol H₂SO₄ te vorm./H₂SO₄ het 'n hoër K₈-waarde.

7.1.3 B ✓

Stronger acid/ionises completely \checkmark (and both acids are of the same concentration)./HNO₃ has a higher K_a value.

Sterker suur/ioniseer volledig (en beide sure het dieselfde konsentrasie)./ HNO₃ het 'n hoër K_a -waarde.

OR/OF

C/CH₃COOH is a weaker acid/ionises incompletely. C/CH₃COOH is 'n swak suur/ioniseer onvolledig.

(2)

DEPARTMENT OF BASIC EDUCATION PRIVATE BAG X889, PRETORIA 19991

(2)

7.2

7.2.1 Marking criteria/Nasienkriteria:

- Substitute/Vervang 0,04 mol·dm⁻³ and 25 x 10⁻³ dm³ (25 cm³) and 19,5 x 10⁻³ dm³ (19,5 cm³). √
- USE mol ratio:/GEBRUIK molverhouding: n(Na₂CO₃): n(HCℓ) = 1:2 √
- Final answer/Finale antwoord: 0,10 to/tot 0,103 mol·dm⁻³ ✓

7.2.2 Greater than/Groter as ✓

The few drops of water will dilute the HCL, \(\shi \) therefore greater volume of acid will be needed to neutralise the base.

'n Paar druppels water sal die <u>HCl verdun</u>, daarom sal 'n groter volume suur benodig word om die basis te neutraliseer.

(2)

(3)

 $= 0.10 \text{ mol·dm}^{-3} \checkmark (0.103)$

7.2.3 POSITIVE MARKING FROM Q7.2.1/POSITIEWE NASIEN VANAF V7.2.1

Marking criteria:

- (a)Substitute 0,1 mol·dm⁻³ & 18,7 x 10⁻³ dm³ (18,7 cm³). ✓
- (b) Use mole ratio: 1:1 ✓
- (c) Calculate n(NH₃) / m(NH₃) in 250 cm³: Substitute 0,25 dm³ (250 cm³) ✓
- (d) Substitute 0,022 dm3 (22 cm3). <
- (e) Substitute 0,02 dm³ (20 cm³) to calculate mole/mass in initial solution. ✓
- (f) Use 17 g·mol⁻¹ in n = $\frac{m}{M}$. \checkmark
- (g)Final answer: 18,06 g Range: 17 to 19,13 g

Nasienkriteria:

- (a) Vervang 0,1 mol·dm³ & 18,7 x 10³ dm³ (18,7 cm³).√
- (b) Gebruik molverhouding: 1:1 ✓
- (c)Bereken n(NH₃) / m(NH₃) in 250 cm³: Vervang 0,25 dm³ (250 cm³). ✓
- (d) Vervang 0,022 dm³ (22 cm³). ✓
- (e) Vervang 0,02 dm³ (20 cm³) om mol/massa van oorspronklike oplossing te bereken. ✓
- (f) Gebruik 17 g·mot¹ in n = $\frac{m}{M}$. \checkmark
- (g)Finale antwoord: 18,06 g ✓ Gebied: 17 tot 19,13 g

OPTION 1/OPSIE 1

n(HC
$$\ell$$
)= cV
= $\frac{(0,1)(18.7 \times 10^{-3})}{1.87 \times 10^{-3}}$ \checkmark (a)
= 1.87×10^{-3} mol

 $n(NH_3)_{reacted/reageer} = n(HC\ell)_{reacted/reageer}$ = 1,87 x 10⁻³ mol \checkmark (b)

$$n(NH_3)$$
 in 22 cm³ = 1,87 x 10⁻³ mol

n(NH₃) in 250 cm³ =
$$\frac{(1.87 \times 10^{-3})(250)}{22 \checkmark (d)}$$

= 0.021 mol
(2,13 x 10⁻²)

 $n(NH_3)$ in initial 20 cm³ = 0,021 mol

$$n = \frac{m}{M}$$

$$0.021 = \frac{m}{17} \checkmark (f)$$

$$m(NH_3) = 0.357 \text{ g in } 20 \text{ cm}^3$$

$$m(NH_3) = \frac{(0.357)(1000)}{20 \checkmark (e)}$$

 $= 17,85 \,\mathrm{g/(g)}(18,06)$

OPTION 2/OPSIE 2

n(HC
$$\ell$$
)= cV
= $\frac{(0.1)(18.7 \times 10^{-3})}{1.87 \times 10^{-3}}$ (a)
= $\frac{1.87 \times 10^{-3}}{1.87 \times 10^{-3}}$ mol

(NH₃)reacted/reageer = $n(HC\ell)$ reacted/reageer = 1,87 x 10⁻³ mol \checkmark (b)

= 1,87 x 10^{-3} mol $\sqrt{(b)}$ n(NH₃) in 22 cm³ = 1,87 x 10^{-3} mol

$$n = \frac{m}{M}$$
1,87 x 10⁻³ = $\frac{m}{17}$ / (f)
$$m(NH_3) = 3,72 \times 10^{-3} \text{ g in } 22 \text{ cm}^3$$

m(NH₃) in 250 cm³ = $\frac{(3.72 \times 10^{-3})(250)}{22 \text{ (d)}}$ = 0.361 g

 $m(NH_3)$ in initial 20 cm³ = 0,361 g

m(NH₃) in 1 000 cm³ = $\frac{(0,361)(1000)}{20 \checkmark (e)}$ = 18,06 g \checkmark (g)

(7)

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 8001

2023 -05- 3 0

APPROVED MARKING GUIDELINE

PUBLIC EXAMINATION

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

7.2.4 Less than 7/Minder as 7 ✓

$$NH_4^+(aq) + H_2O(\ell) \checkmark \Rightarrow NH_3(aq) + H_3O^+(aq) \checkmark$$

Notes/Aantekeninge:

Ignore single arrow/Ignoreer enkelpyl: →

QUESTION/VRAAG 8

- Pressure: <u>1 atmosphere</u> /101,3 kPa /1,01 x 10⁵ Pa / Druk: <u>1 atmosfeer</u> /101,3 kPa /1,01 x 10⁵ Pa
 - Temperature/Temperatuur: 25 °C /298 K ✓

8.2 To maintain electrical neutrality/To complete the circuit/To allow movement of ions between electrolytes ✓

Om elektriese neutraliteit te verseker/Om die stroombaan te voltooi/Laat ione

Om elektriese neutraliteit te verseker/Om die stroombaan te voltooi/Laat ione toe om tussen elektroliete te beweeg

(1)

8.3

OPTION 1/OPTION 1

$$E_{\text{cell}}^{\theta} = E_{\text{cathode}}^{\theta} - E_{\text{anode}}^{\theta} \checkmark$$

 $1,20 = E_{\text{cathode}}^{\theta} - 0 \checkmark$
 $E_{\text{cathode}}^{\theta} = 1,20 \text{ (V)} \checkmark$

X is Pt/platinum ✓

Notes/Aantekeninge

- Accept any other correct formula from the data sheet. Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik, bv. E°_{sel} = E°_{OM} E°_{RM} gevolg deur korrekte vervangings: Max./Maks. 4/_E

OPTION 2/OPSIE 2

$$\begin{cases} X^{2+} + 2e^{-} \rightarrow X \\ \underline{H_2 \rightarrow 2H^{+} + 2e^{-}} \\ H_2 + X^{2+} \rightarrow X + 2H^{+} \end{cases}$$

 $E^{\theta} = 1,20 \text{ V} \checkmark$ $E^{\theta} = 0,00 \text{ V} \checkmark$

 $E^{\theta} = 1,20 \text{ V} \checkmark$

X is Pt/Platinum ✓

(5)

8.4 $H_2(g) \rightarrow 2H^+(aq) + 2e^- \checkmark \checkmark$

Marking criteria/Nasienkriteria:

- $2H^{+}(aq) + 2e^{-} \leftarrow H_{2}(g)$ $(\frac{2}{2})$ $H_{2}(g) \rightleftharpoons 2H^{+}(aq) + 2e^{-}$ $(\frac{1}{2})$ $H_{2}(g) \leftarrow 2H^{+}(aq) + 2e^{-}$ $(\frac{0}{2})$ $2H^{+}(aq) + 2e^{-} \rightleftharpoons H_{2}(g)$ $(\frac{0}{2})$
- Ignore if charge omitted on electron. Il gnoreer indien lading weggelaat op elektron.
- If charge (+) omitted on H⁺/Indien lading (+) weggelaat op H⁺:
 Example/Voorbeeld: H₂(g) → 2H(aq) + 2e⁻ Max./Maks. ½

(2)

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2023 -05- 3 0 44

APPROVED MARKING GUIDELINE

SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

8.5 H+, X²⁺ (Pt²⁺), Au³⁺√

H₂ loses/donates electrons to both Au and X/Pt. ✓
 OR

H₂ is the anode/is oxidised in both cells. Therefore H⁺ is the weakest oxidising agent.

The reduction potential of X | X²⁺ is 1,2 V and that of Au | Au³⁺ is 1,5 V. ✓
 OR

The reduction potential of X | X²⁺ is smaller than that of Au | Au³⁺.

According to the Table of Standard Reduction Potentials Au³⁺ is stronger oxidation agent than Pt²⁺.

OR

The cell containing Au produces a higher emf than cell containing X.

- H₂ verloor/skenk elektrone aan beide Au en X/Pt. ✓
 OF
 H₂ is die anode/word geoksideer in beide selle.
 Daarom is H⁺ die swakste oksideermiddel
- Die reduksiepotensiaal van X | X²⁺ is 1,2 V en die van Au | Au³⁺ is 1,5 V. ✓
 OF

Die reduksiepotensiaal van X | X2+ is kleiner as dié van Au | Au3+.

OF

Volgens die Tabel van Standaardreduksiepotensiale is Au³⁺ 'n sterker oksideermiddel as Pt²⁺

OF

Die sel wat Au bevat het 'n hoër emk as die sel wat X bevat.

(3) [14]

QUESTION/VRAAG 9

- 9.1 A cell in which electrical energy is converted into chemical energy. ✓✓ (2 or 0)
 'n Sel waar elektriese energie na chemiese energie omgeskakel word. (2 of 0)
 (2)
- 9.2 R ✓
 Oxidation takes place./R loses electrons./R decreases in mass. ✓
 Oksidasie vind plaas./R verloor elektrone./R se massa sal afneem. (2)
- 9.3 9.3.1 Zn²⁺(aq) + 2e⁻ → Zn(s) ✓ ✓ Ignore phases/*Ignoreer fases*

Marking criteria/Nasienkriteria:

- $Zn(s) \leftarrow Zn^{2+}(aq) + 2e^{-}$ $(\frac{2}{2})$ $Zn^{2+}(aq) + 2e^{-} \rightleftharpoons Zn(s)$ $(\frac{1}{2})$ $Zn^{2+}(aq) + 2e^{-} \leftarrow Zn(s)$ $(\frac{0}{2})$ $Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e^{-}$ $(\frac{0}{2})$
- · Ignore if charge omitted on electron. Ilgnoreer indien lading weggelaat op elektron.
- If charge (+) omitted on Zn²⁺/Indien lading (+) weggelaat op Zn²⁺:
 Example/Voorbeeld: Zn²(aq) + 2e⁻ → Zn(s) Max./Maks: ½

9.3.2 Zinc/Zn/Sink ✓ (1)

9.4 Zn²+ ions are reduced/[Zn²+] decreases. ✓
Zn²+ ions must be replaced by oxidation of the Zn electrode. ✓
Zn²+ ione word gereduseer/[Zn²+] neem af.
Zn²+ ione moet vervang word deur oksidasie van Zn-elektrode.

(2)

TOTAL/TOTAAL: 150

(2)

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2023 -05- 3 ()

APPROVED MARKING GUIDELINE

PUBLIC EXAMINATION