

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

2023

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 21 pages.

Mechanical Technology: Welding and Metalwork DBE/2023 SC/NSC - Marking Guidelines **QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)** 1.1 C✓ (1) 1.2 A✓ (1) 1.3 A✓ (1) 1.4 C✓ (1) 1.5 (1) В✓ 1.6 (1) **[6]** A✓

Mechanical Technology: Welding and Metalwork 3 SC/NSC – Marking Guidelines DBE/2023

QUESTION 2: SAFETY (GENERIC)

2.1 Safety rule after the work procedures:

Switch off the machine. ✓ (1)

- 2.2 Space between the tool rest and the emery wheel:
 - To prevent the work piece from jamming between the wheel and tool rest. ✓
 - Prevents the wheel from being damaged. ✓
 - Prevents the work piece from being damaged. ✓
 - Prevent injury. ✓

(Any 2 x 1) (2)

- 2.3 Workshop layouts:
 - 2.3.1 Process layout. ✓ (1)
 - 2.3.2 Product layout. ✓ (1)
- 2.4 **Hydraulic press:**
 - Safety goggles ✓
 - Safety gloves ✓
 - Safety shoes ✓
 - Overall ✓

(Any 1 x 1) (1)

- 2.5 Safety guard on the portable angle grinder:
 - To protect one against sparks/metal particles. ✓
 - To protect one from a breaking disc. ✓
 - To protect your hand from coming into contact with the disc. ✓

(Any 1 x 1) (1)

- 2.6 **Shearing/Guillotine machine:**
 - Follow the manufactures recommendations. ✓
 - Keep hands away from action points. ✓
 - Do not exceed the maximum material thickness. ✓
 - Ensure that all guards are in place and secure. ✓
 - Report defects immediately. ✓

(Any 1 x 1) (1)

Mechanical Technology: Welding and Metalwork 4 SC/NSC – Marking Guidelines DBE/2023

2.7 Storing gas cylinders:

- Upright position ✓
- Stored at 20°C / cool area ✓
- Empty cylinders stored separately from full cylinder. ✓
- Never store cylinders on top of each other. ✓
- Oxygen cylinders separate from fuel cylinders. ✓
- Secure gas cylinders. ✓
- Ensure that cylinders are properly closed. ✓
- Stored away from sparks / flammable material/ electrical switches. ✓
- Stored in a well-ventilated area. ✓
- Safety signs should be displayed. ✓
- Keep cylinders clearly labelled (Full/Empty). ✓

(Any 2 x 1) (2) [10]

Mechanical Technology: Welding and Metalwork 5 SC/NSC – Marking Guidelines DBE/2023

QUESTION 3: MATERIALS (GENERIC)

3.1 **Purpose of tempering:**

- To relieve ✓ strain / brittleness. ✓
- To increase ✓ the toughness of the steel. ✓
- To refine ✓ grain structure. ✓

(Any 1 x 2) (2)

3.2 **Heat treatment processes:**

3.2.1 **Case hardening:**

- To obtain a wear-resistant surface ✓ and at the same time be tough enough internally at the core ✓ to withstand the applied loads.
- For a hard case ✓ over a tough core. ✓

(Any 1 x 2) (2)

3.2.2 **Annealing:**

- To relieve ✓ internal stresses. ✓
- To soften ✓ steel. ✓
- Facilitate ✓ the machining processes. ✓
- Increase ✓ the steel's ductility. ✓
- Reduce ✓ brittleness. ✓

(Any 1 x 2) (2)

3.3 **Spark test:**

- Hold steel against grinding wheel. ✓
- Observe the spark pattern to identify the type of steel. ✓

(2)

3.4 **Tests:**

3.4.1 Filing test:

File on the tip or near the edge ✓ of the material. The bite will determine the hardness. ✓

(2)

3.4.2 **Bend test:**

- Metal is subjected to deformation by bending. ✓
- Observe the rupture of the metal. ✓

(2)

3.5 **Sound test on steel:**

3.5.1 Low carbon steel (LCS):

Dull (low pitch) ✓ sound.

(1)

3.5.2 **High carbon steel (HCS):**

Loud and clear (high pitch) ✓ sound.

(1) **[14]**

Mechanical Technology: Welding and Metalwork DBE/2023 SC/NSC - Marking Guidelines **QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)** 4.1 (1) C✓ 4.2 (1) В✓ 4.3 A✓ (1) 4.4 В✓ (1) (1) 4.5 D✓ 4.6 D✓ (1) 4.7 В✓ (1) (1) 4.8 D✓ C✓ (1) 4.9 (1) 4.10 A ✓ 4.11 (1) C✓ (1) 4.12 A✓ 4.13 D✓ (1) 4.14 В✓ (1)

[14]

Mechanical Technology: Welding and Metalwork 7
SC/NSC – Marking Guidelines

DBE/2023

QUESTION 5: TERMINOLOGY(TEMPLATES) (SPECIFIC)

- Roof covering ✓ is attached ✓ to the purlins.
 - Purlins contribute to the rigidity ✓ and correct spacing ✓of the rafters/structure.

(Any 1 x 2) (2)

5.2 Types of weld symbols:

5.2.1 Site weld
$$\checkmark$$
 (1)

5.2.3 U butt weld
$$\checkmark$$
 (1)

5.3 Strip templates are used for longer sections of angle iron. ✓ (1)

5.4 **Dimensions of the material:**

5.4.1 **Mean diameter:**

Mean
$$\emptyset$$
 = Inside \emptyset + Thickness
= $180 + 12 \checkmark$
= $192 \text{ mm } \checkmark$ (2)

5.4.2 **Mean circumference:**

Mean circumference =
$$\pi \times$$
 Mean Ø
= $\pi \times 192 \, \text{mm} \checkmark$
= 603,186 mm \checkmark
Round off to 603 mm \checkmark (3)

5.5 Welding symbols:

- Fillet weld both sides ✓
- 8 mm in size ✓
- Length of weld bead is 50 mm ✓
- Pitch of weld is 100 mm ✓ (4)

Mechanical Technology: Welding and Metalwork 8 DBE/2023 SC/NSC – Marking Guidelines

5.6 **Roof truss:**

- A- Purlins ✓
- B- Ridging ✓
- C- Roof covering ✓
- D- Rafter ✓

E- Internal bracing member ✓ (5)

5.7 **Lattice beams:**

- Tends to be very rigid. ✓✓
- Gives good strength to weight ratios over long spans. ✓✓

(Any 1 x 2) (2)

[23]

Mechanical Technology: Welding and Metalwork 9
SC/NSC – Marking Guidelines

DBE/2023

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1	Bench grinder uses: Sharpening of tools □ Shaping of metal □ Remove unwanted material □ Remove rough edges (burrs) □ Grinding prior to welding of work piece □ Used in conjunction with wire brush wheel to remove rust □	
	 Used in conjunction with buffing wheel to polish work piece	(3)
6.2	MIG: Metal inert gas □	(1)
6.3	 Plasma cutter: The cutter sends an electrical channel of ionized gas through the work piece being cut. □ It forms a complete electric circuit via a grounding clamp. □ Compressed air is blown towards the work piece through a focused nozzle at high speed. □ An electric arc is formed between the gas nozzle and the work piece. □ 	
6.4	 Types of taps: Taper tap / first tap □ Intermediate tap / second tap □ Plug tap / bottoming tap □ 	(3)
6.5	Removing slag: • Chipping hammer ✓ • Wire brush ✓ (Any 1 x 1)	(1)
6.6	Vertical rollers: Used solely for bending / rolling thick, heavy plates. ✓	(1)
6.7	 Horizontal band saw: Ensures clean cut. □ Removes shavings / cuttings. □ Blade life span is prolonged. □ Cools the blade. □ Cools the metal. □ 	(2)
	(Any 2 x 1)	(2)

Mechanical Technology: Welding and Metalwork 10 DBE/2023 SC/NSC – Marking Guidelines

6.8 Oxy-acetylene equipment - processes:

- Gas welding ✓
- Brazing ✓
- Silver soldering ✓
- Heating / Melting ✓
- Cutting ✓
- Gouging ✓

(Any 3 x 1) (3) [18]

Mechanical Technology: Welding and Metalwork 11
SC/NSC – Marking Guidelines

DBE/2023

QUESTION 7: FORCES (SPECIFIC)

7.1 Frameworks:

Note to marker:

Marker must redraw the space and force diagram according to given scales for marking purposes. Tolerance of ±2 mm

MEMBER	FORCE (N)	NATURE
AE	140 N ✓	Strut ✓
EF	285 N ✓	Strut ✓
FC	140 N ✓	Strut ✓
BF	100 N ✓	Tie ✓
ED	100 N ✓	Tie ✓

(15)

Mechanical Technology: Welding and Metalwork 12 SC/NSC – Marking Guidelines DBE/2023

7.2 **Beams:**

7.2.1 Calculate RL:

Moments about RR:

RL×10 =
$$(8 \times 8) + (4 \times 5) + (6 \times 2)$$

RL = $\frac{96}{10}$
RL = 9,6 kN \checkmark (4)

7.2.2 Calculate RR:

Moments about RL:

$$RR \times 10 = (6 \times 8) + (4 \times 5) + (8 \times 2)$$

$$RR = \frac{84}{10}$$

$$RR = 8.4 \text{ kN } \checkmark$$
(4)

7.2.3 **Bending moment:**

Moment at:

B:
$$9.6 \times 2 = 19.2 \text{ kN.m} \checkmark$$

C:
$$(9.6 \times 5) - (8 \times 3) = 24 \text{ kN.m} \checkmark$$

D:
$$(9.6 \times 8) - (8 \times 6) - (4 \times 3) = 16.8 \text{ kN.m} \checkmark$$
 (6)

Mechanical Technology: Welding and Metalwork 13 SC/NSC – Marking Guidelines DBE/2023

7.2.4 **Bending-moment diagram:**

Note to marker:

Marker must redraw the bending-moment diagram according to given scales for marking purposes.

(4)

Mechanical Technology: Welding and Metalwork 14 SC/NSC – Marking Guidelines DBE/2023

7.3 **Stress and strain:**

7.3.1 Cross sectional area m²:

$$A = \frac{\pi D^{2}}{4}$$

$$= \frac{\pi \times 0.03^{2}}{4} \checkmark$$

$$= 0.71 \times 10^{-3} \text{ m}^{2} \checkmark$$
(2)

7.3.2 **Stress MPa:**

Stress =
$$\frac{\text{Load}}{\text{Area}}$$

= $\frac{80 \times 10^3}{0.71 \times 10^{-3}} \checkmark$
= 112676056,3 Pa
= 112,68 MPa \checkmark (3)

7.3.3 **Strain:**

Strain =
$$\frac{\Delta L}{OL}$$

= $\frac{0.06}{3000}$ \checkmark
= 0.00002 OR 2 × 10⁻⁵ \checkmark (2)

7.3.4 Young's modulus of elasticity:

$$E = \frac{\text{Stress}}{\text{Strain}}$$

$$= \frac{112,68 \times 10^{6}}{2 \times 10^{-5}} \checkmark \qquad OR = \frac{112,68 \times 10^{6}}{2 \times 10^{-5}} \checkmark$$

$$= 5,633802815 \times 10^{12} \text{ Pa} \qquad = 5,634 \times 10^{12} \text{ Pa}$$

$$= 5633,80 \times \text{GPa} \checkmark \qquad = 5634 \text{ GPa} \checkmark \qquad (3)$$

7.4 Maximum stress:

Stress =
$$\frac{\text{Load}}{\text{Area}}$$

= $\frac{55 \times 10^3}{0.9 \times 10^{-5}}$ \(= 6111111111 \text{Pa} \)
= 6111,11 MPa \((2) \)
[45]

Mechanical Technology: Welding and Metalwork 15 SC/NSC – Marking Guidelines DBE/2023

QUESTION 8: JOINING METHODS (INSPECTION OF WELD) (SPECIFIC)

8.1 Visual inspection:

- Shape of the profile ✓
- Uniformity of the surface ✓
- Overlap ✓
- Undercutting ✓
- Penetration bead ✓
- Root groove ✓
- Fusion ✓
- Reinforcement ✓
- Porosity ✓
- Spatter ✓
- Slag inclusions ✓
- (ANY WELD DEFECT THAT CAN BE SEEN VISUALLY AFTER WELDED) ✓

(Any 2 x 1) (2)

8.2 Free bend test:

- Ductility ✓
- Brittleness ✓
- Malleability ✓
- Elongation ✓
- Elasticity ✓

(Any 1 x 1) (1)

8.3 **Weld defect:**

Weld defect is a result which does not meet ✓ the prescribed requirements of a welded joint. ✓ (2)

8.4 Causes of welding defects:

8.4.1 **Undercutting:**

- Current too high ✓
- Current too low ✓
- Wrong electrode angle ✓
- Arc length too long ✓
- Weld speed too fast ✓
- Too low arc voltage ✓
- Faulty electrode manipulation ✓

(Any 2 x 1) (2)

Mechanical Technology: Welding and Metalwork 16 SC/NSC – Marking Guidelines DBE/2023

8.4.2 **Blow hole:**

- Presence of contaminants / impurities on the job surface or on electrode flux ✓
- Presence of high sulphur in the job or electrode materials ✓
- Lack of shielding gas ✓
- Using wet electrode ✓

(Any 2 x 1) (2)

8.5 **Destructive tests:**

- Machinability test ✓
- Nick break test ✓
- Free bend test ✓
- Guided bend test ✓

(Any 2 x 1) (2)

8.6 **Procedure for conducting X-ray test:**

- The photographic film is sealed in an envelope (so that the light cannot expose it) and placed behind the object being tested. ✓
- The X-ray or gamma ray source is placed in front of the object being tested. ✓
- The tester should stand behind lead shields and far away from possible harmful exposure. The source is activated for a brief moment and the X-rays penetrate the test piece. ✓
- As they pass through the areas of lower density, the rays expose the defect on the film as a lighter colour on the negative, ✓ indicating a weld defect. ✓
- Photographic films provide a permanent record of the shadow which can be carefully studied. / Shown on a monitor screen ✓

8.7 **Types of dye:**

- Fluorescent dye ✓
- Brightly coloured dye ✓

(2)

(6)

8.8 Internal weld defects:

- Cracks ✓
- Slag inclusion ✓
- Lack of fusion ✓
- Lack of root penetration ✓
- Blow hole ✓
- Porosity ✓

(Any 2×1) (2)

8.9 **Centreline cracks:**

- Use the correct width to depth ratio. ✓
- Decreasing the current to decrease excess penetration. ✓
- Decreasing welding/arc voltage. ✓

(Any 2 x 1) (2)

[23]

Mechanical Technology: Welding and Metalwork 17 SC/NSC – Marking Guidelines DBE/2023

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 **Distortion and residual stress:**

- If the expansion that occurs when metal is heated is resisted then distortion will occur. ✓
- When contraction that occurs on cooling is resisted then a stress will be applied. ✓
- If the applied stress causes movement then distortion occurs. ✓
- If the applied stress does not cause movement then there will be residual stress in the welded joint. ✓

(Any 2×1) (2)

9.2 Shrinkage:

Shrinkage is a form of plastic deformation where the metal has deformed ✓ as a result of contraction on cooling. ✓ (2)

9.3 **Grain size:**

- The prior amount of cold work ✓
- The temperature and time of the annealing process ✓
- The composition ✓
- The melting point ✓

(Any 2 x 1) (2)

9.4 Cold working and hot working:

- Cold working is when deformation ✓ of steel takes place below the recrystallisation temperature (AC₁) ✓ of the steel.
- Hot working is when deformation ✓ of steel takes place above the recrystallisation temperature (AC₁) ✓ of the steel.

9.5 **Distortion:**

- Do not over weld. ✓
- Apply intermittent welding. ✓
- Place welds near the neutral axis. ✓
- Use as few passes as possible. ✓
- Use back-step welding. ✓
- Anticipate the shrinkage forces. ✓
- Plan the welding sequence. ✓
- Use strong backs. ✓
- Use clamps, jigs and fixtures. ✓

(Any 4 x 1) (4)

Mecha	nical Technol	logy: Welding and Metalwork 18 SC/NSC – Marking Guidelines	DBE/2023	
9.6	Types of distortion:			
	9.6.1	Longitudinal distortion ✓	(1)	
	9.6.2	Angular distortion ✓	(1)	
9.7	Metal is cooled rapidly: Rapid cooling of metal results in large temperature differences that set up stresses, ✓ which cause cracks on the surface. ✓		t up (2) [18]	

Mechanical Technology: Welding and Metalwork 19 SC/NSC – Marking Guidelines DBE/2023

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Maintenance definition:**

Precautionary measures, actions and processes ✓ that are taken to keep a machine or process ✓ in a functional order. ✓ (3)

10.2 **Pedestal drilling machine:**

- Visual checks of electrical wiring, switches. ✓
- Verify that all guards are secure and function correctly. ✓
- Lubricate moving parts. ✓
- Use moisture-penetrating oil spray to prevent rust. ✓
- Check for availability of specific tools. ✓
- Check the run-out of the spindle. ✓
- Inspect drive belts for wear. ✓
- Ensure the drive belt is correctly tensioned. ✓
- Check the condition of the rack and pinion mechanisms and lubricate. ✓
- Ensure cuttings are removed. ✓
- Inspect the Morse taper sleeves for burrs/scratches. ✓
- Check the chuck is correctly fitted and tight. ✓

(Any 2 x 1) (2)

10.3 **Tagging plates:**

- It is to isolate switches of machines before maintenance is undertaken. ✓
- To show workers that maintenance is being carried out on a specific machine. ✓

(Any 1 x 1) (1)

10.4 Service records:

- Assist in the monitoring of the condition of the machines. ✓
- Assist in upholding warranties. ✓
- Assist in keeping a history of maintenance and repairs. ✓

(Any 2 x 1) (2)

[8]

Mechanical Technology: Welding and Metalwork 20 SC/NSC – Marking Guidelines DBE/2023

QUESTION 11: TERMINOLOGY (DEVELOPMENTS) (SPECIFIC)

11.1 Hopper:

11.1.2 (a) **A-1**:

$$A-1 = \sqrt{100^2 + 125^2 + 450^2} \checkmark$$

$$= \sqrt{228125}$$

$$= 477,62 \text{ mm } \checkmark$$
(2)

(b) **A-2**:

$$A - 2 = \sqrt{400^2 + 125^2 + 450^2} \checkmark$$

$$= \sqrt{378125}$$

$$= 614,92 \,\text{mm} \checkmark \tag{2}$$

(c) **B-3**:

$$B-3 = \sqrt{375^2 + 100^2 + 450^2} \checkmark$$

$$= \sqrt{353125}$$

$$= 594,24 \text{ mm } \checkmark$$
(2)

11.2 Cone frustum:

11.2.1 **A-B:**

$$A - B = \frac{\pi \times D}{12}$$

$$= \frac{\pi \times 800}{12}$$

$$= 209,44 \text{ mm} \checkmark$$
(3)

11.2.2 **0–1**:

$$0-1 = \frac{\pi \times d}{12}$$

$$= \frac{\pi \times 600}{12}$$

$$= 157,08 \text{mm} \checkmark$$
(3)

Mechanical Technology: Welding and Metalwork 21 SC/NSC – Marking Guidelines DBE/2023

11.2.3 **A-0**:

Plan length / base line:

$$A-0 = 400 - 300$$
 \checkmark = 100 mm \checkmark

True length:

$$A - 0 = \sqrt{100^2 + 500^2} \checkmark$$

$$= \sqrt{260000}$$

$$= 509,90 \text{ mm} \checkmark$$
(4)

11.3 **Square to round transformer:**

Use to connect ducting sections ✓ of dissimilar shapes to each other. ✓ (2)

[21]

TOTAL: 200

