

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2023

MECHANICAL TECHNOLOGY: WELDING AND METALWORK MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 12 pages.

MECHANICAL TECHNOLOGY (WELDING AND METALWORK) (EC/SEPTEMBER 2023) QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC) 1.1 C ✓ (1) 1.2 D ✓ (1) 1.3 C ✓ (1) 1.4 C ✓ (1) 1.5 A ✓ (1) 1.6 B ✓ (1)[6] **QUESTION 2: SAFETY (GENERIC)** 2.1 Arc welding safety precautions: Wear the correct PPE. ✓ Ensure the electrode holder is well insulated. √ The environment must be free of water and combustible materials. ✓ Ensure the environment is well ventilated. ✓ (Any 3 x 1)(3) 2.2 Pedestal drilling machine safety precautions: Wear correct PPE. ✓ Make sure all guards are in place. ✓ Clamp the workpiece securely. ✓ Use the correct drill bit. ✓ Do not make any adjustment while the machine is in motion. ✓ Use the correct speed. ✓ Do not remove chips by hand. ✓ (Any 2 x 1) (2) Manual guillotine maximum cutting thickness is 1,20 mm ✓ (1) 2.4.1 Advantages of product layout: 2.4 Handling of material is limited to a minimum. ✓ Time period of manufacturing cycle is less. ✓ Production control is almost automatic. ✓ Greater use of unskilled labour is possible. ✓ Less total inspection is required. ✓ Less total floor space is needed per unit of production. ✓ (Any 2 x 1) (2)2.4.2 Advantages of the process layout: High machine utilisation because more than one product is manufactured. ✓ Better supervision as a result of subdivision of processes. ✓ Less interruption in flow of work when machines become defective. ✓ Lower equipment cost, since one machine can produce more than one product. ✓ Better control of total manufacturing cost. ✓ Greater flexibility in the production process. ✓ (Any 2 x 1) (2) [10]

Pedestal grinding machine ✓ (1)
 [14]

VRAAG 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

- 4.1 D ✓
- 4.2 D ✓
- 4.3 C ✓
- 4.4 A ✓
- 4.5 A ✓
- 4.6 D ✓
- 4.7 A ✓
- 4.8 B ✓
- 4.9 A ✓
- 4.10 A ✓
- 4.11 D ✓
- 4.12 B ✓
- 4.13 A ✓
- 4.14 D ✓

(14 x 1) **[14]**

(EC/SEPTEMBER 2023) MECHANICAL TECHNOLOGY (WELDING AND METALWORK)

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 Other side up \checkmark (1)

5.2 Sketch of roof truss:

5.3. Calculations of steel ring:

5.3.1 Mean
$$\Theta$$
 = Outside Θ – plate thickness

OR

Inside O + plate thickness

Mean $\Theta = 520 - 42 \checkmark$

= 478 mm ✓

Mean Circumference = π x mean Θ

 $= \pi \times 478$

= 1501,87 mm ✓

Rounded of to 1 502 mm for one ring. ✓ (4)

5.3.2

5.4 A – Contour symbol ✓

B – Finish symbol grinding ✓

C – Length of weld ✓

D – Pitch of weld ✓

E – Weld all round ✓

F – Arrow ✓

G – Finish symbol machining ✓

H – Tail ✓

(8) **[23]**

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

- 6.1 A Current adjuster ✓
 - B Electrode terminal ✓
 - C Electrode holder ✓
 - D Electrode ✓
 - E Arc gap ✓
 - F Earth terminal ✓
 - G Earth clamp ✓
 - H Current scale ✓ (8)
- 6.2 Metal inert gas ✓ (1)
- 6.3 CO_2 and Terrell $\checkmark\checkmark$ (2)
- 6.4 The *power saw* is used to rough-cut large sections of metal ✓ before they are further machined or used in manufacturing. It uses a reciprocating movement. ✓ The *band saw* cut in a horizontal position continuously in a forward direction ✓ due to the fact that the band is continuously moving in a circular path. ✓ (4)
- 6.5 Stock ✓
 Mixer ✓
 Nozzle ✓

 (3)

 [18]

QUESTION 7: FORCES (SPECIFIC)

7.1 7.1.1 **Stress**

Stress =
$$\frac{LOAD}{AREA}$$

= $\frac{80 \times 10^3}{\frac{\pi D^2}{4}} \checkmark$
 $\pi D^2 = \frac{4 \times 80 \times 10^3}{30 \times 10^6} \checkmark$
 $D^2 = \frac{4 \times 80 \times 10^3}{\pi \times 30 \times 10^6} \checkmark \checkmark$
D = 58,2 mm \checkmark (5)

7.1.2 **Strain**

Young's Modulus =
$$\frac{STRESS}{STRAIN}$$

Strain =
$$\frac{Stress}{Young's \ modulus}$$
 \checkmark

$$= \frac{30 \times 10^6}{90 \times 10^9} \checkmark$$

Strain =
$$0.00033 \checkmark$$
 (3)

(6)

7.1.3 Change in length

$$Strain = \frac{Change in length}{Original length}$$

Change = Strain x Original length
$$\checkmark$$

= 0,00033 x 4 \checkmark
= 0,00133 mm \checkmark (3)

7.2 7.2.1 Reactions

Take reactions RL and RR

RR x 10 = $(3 \times 3) + (10 \times 4) + (6 \times 7)$

$$= 9 + 40 + 42$$

$$= 91 \checkmark$$

$$RR = 9,1 N \checkmark$$

$$RL \times 10 = (6 \times 3) + (10 \times 6) + (3 \times 7) \checkmark$$

$$= 18 + 60 + 21$$

$$= 99 \checkmark$$

7.2.2 B
$$M_A$$
: (9,9 x 3) = 29,7 N/m \checkmark

RL = 9,9 N ✓

$$BM_{R}$$
: $(9.9 \times 5) - (3 \times 2) = 43.5 \text{ N/m} \checkmark\checkmark$

$$BM_C$$
: $(9.9 \times 7) - (3 \times 4) - (10 \times 3) = 27.3 \text{ N/m} \checkmark \checkmark$ (5)

7.3 Framework:

Member	Strut	Tie	Force
AE	√√		15,3 N ✓
BG	√√		11,3 N ✓
CH	√ √		12,2 N ✓
FG	√ √		6,9 N ✓
EF			
DE		$\checkmark\checkmark$	13,25 N ✓
DF		$\checkmark\checkmark$	13,25 N ✓
DH		$\checkmark\checkmark$	6,2 N ✓
GH		V	7 N ✓

Guide

(23) **[45]**

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS)

- The liquid dye penetrant is sprayed onto the clean surface being inspected. √
 - Allow a short time for the liquid to penetrate. ✓
 - Remove the excess dye with a cleaner (solvent). ✓
 - Wash the surface and allow to dry. ✓
 - When the surface is dry, spray it with a developer to bring out the colour, which was sprayed on and penetrated any cracks or pin holes. ✓
 - Fluorescent liquids are also used for the surface being inspected. 🗸
 - After a short while, remove the liquid with a cleaner and wait for it to dry. ✓
 - A black-light source (ultraviolet light) is then brought up to the surface. ✓
 - Areas where the fluorescent liquid has penetrated will show up under the light. √ (Any 8 x 1) (8)
- 8.2 It refers to a cavity-type formed by gas ✓ during the solidification ✓ of molten weld metal. ✓ (3)
- 8.3 Shape of profile ✓
 - Uniformity of surface ✓
 - Overlap ✓
 - Undercutting
 - Penetration bead
 - Root groove (Any 3 x 1) (3)
- 8.4 Slag inclusion ✓
 - Porosity ✓
 - Lack of fusion ✓
 - Oxidised or burnt metal √ (4 x 1)
- 8.5 Correct flame for the work at hand ✓
 - Correct angle of welding torch and welding rod ✓
 - Depth penetration and amount of fusion
 - The rate of progress along the joint (Any 2 x 1) (2)
- 8.6 Good for ferrous and non-ferrous metals ✓
 - Low cost ✓
 - Easy to apply ✓
 - Minimal training required

(Any 3 x 1) (3)

[23]

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

- 9.1 Do not over weld. ✓
 - Control the fill up. ✓
 - Use intermittent welds. ✓
 - Use the smallest leg size for fillet welds. ✓
 - Use minimum root opening.
 - Use minimum included angle.
 - Select joints that use minimum weld metal. (Any 4 x 1) (4)
- 9.2 Do not over weld. ✓
 - Proper preparation is needed. ✓
 - Use intermittent welding. ✓
 - Use as few passes as possible. ✓
 - Place welds near the neutral axis. ✓
 - Use back step welding.
 - Anticipate shrinkage forces.
 - Plan the welding sequence.
 - Minimise welding time.

(Any 5 x 1) (5)

- 9.3 Low carbon steel (0,15–0,30%) ✓ known as mild steel. ✓ Medium carbon steel (0,31–0,70%) ✓ known as spring steel. ✓ High carbon steel (0,71–1,5%) ✓ known as tool steel. ✓ (6)
- 9.4 It is common in gas metal arc welding ✓ and comprises of droplets of molten material ✓ that are generated at or near the welding arc. ✓ (3) [18]

QUESTION 10: MAINTENANCE (SPECIFIC)

- 10.1 To accommodate multiple technicians to do maintenance, ✓ using their own locks. ✓ (2)
- 10.2 If excessive loads are applied onto the spindle bearings, ✓ the grinding wheel and the grinding machine motor. ✓ (2)
- 10.3 The journals and bearings/bushes must be well lubricated. ✓
 - Failure to lubricate the components will result in friction and wear of the components. ✓
- 10.4 To monitor the machine's condition. ✓
 - To assist in upholding warrantees and guarantees that forms part of the service agreements. ✓

(2) [8]

(2)

QUESTION 11: TERMINOLOGY (SPECIFIC)

11.1 11.1.1 Length CG =
$$\sqrt{60^2 + 130^2 + 260^2}$$
 \checkmark

$$= \sqrt{88 \ 100}$$

$$= 296.82 \ \text{mm} \ \checkmark$$
 (2)

11.1.2 Length BG =
$$\sqrt{60^2 + 175^2 + 260^2}$$
 \checkmark
= $\sqrt{101825}$
= 319,10 mm \checkmark (2)

11.1.3 Length AE =
$$\sqrt{60^2 + 160^2 + 260^2}$$
 \checkmark
= $\sqrt{96800}$
= 311,13 mm \checkmark (2)

11.1.4 Length GD =
$$\sqrt{130^2 + 140^2 + 260^2}$$
 \checkmark
= $\sqrt{104 \ 100}$
= 322,43 mm \checkmark (2)

11.1.5 Length HC =
$$\sqrt{40^2 + 130^2 + 260^2}$$
 \checkmark
= $\sqrt{86 \ 100}$
= 293,43 mm \checkmark (2)

11.1.6 Length HK =
$$\sqrt{130^2 + 260^2} \checkmark$$

= $\sqrt{84500}$
= 293,43 mm \checkmark (2)

11.2 11.2.1 Length AB =
$$\pi$$
 x D ÷ 2 \checkmark
= π x 800 ÷ 2 \checkmark
=1 256,8 mm \checkmark (3)

11.2.2 Circumference of small circle:

Circumference =
$$\pi \times D \checkmark$$

= $\pi \times 350 \checkmark$
= 1 099,7 mm \checkmark (3)

11.2.3 Length
$$0 - 2$$
:
 $0 - 2 = D \div 2 \checkmark$
 $= 350 \div 2 \checkmark$
 $= 175 \text{ mm } \checkmark$ (3)
[21]

TOTAL: 200

