

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za





# PREPARATORY EXAMINATION VOORBEREIDENDE EKSAMEN

## 2023

# MARKING GUIDELINES/NASIENRIGLYNE

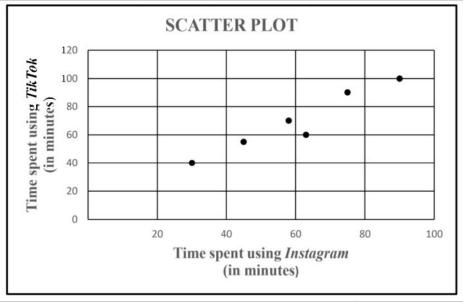
MATHEMATICS/WISKUNDE (PAPER/VRAESTEL 2) (10612)

19 pages/bladsye



#### NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the marking guidelines. Stop marking at the second calculation error.
- Assuming answers/values to solve a problem is NOT acceptable.

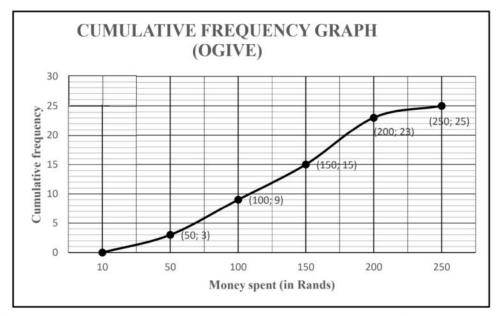

#### LET WEL:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aannames van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

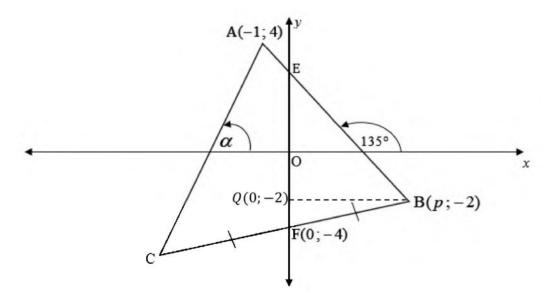
|              | GEOMETRY/MEETKUNDE                                                    |  |  |  |
|--------------|-----------------------------------------------------------------------|--|--|--|
|              | A mark for a correct statement                                        |  |  |  |
| $\mathbf{S}$ | (A statement mark is independent of a reason.)                        |  |  |  |
|              | 'n Punt vir 'n korrekte bewering                                      |  |  |  |
|              | ('n Punt vir 'n bewering is onafhanklik van die rede.)                |  |  |  |
|              | A mark for a correct reason                                           |  |  |  |
| R            | (A reason mark may only be awarded if the statement is correct.)      |  |  |  |
|              | 'n Punt vir 'n korrekte rede                                          |  |  |  |
|              | ('n Punt word slegs vir die rede toegeken as die bewering korrek is.) |  |  |  |
| S/R          | Award a mark if the statement AND reason are both correct.            |  |  |  |
| 5/10         | (Ken'n punt toe as beide die bewering EN rede korrek is.)             |  |  |  |



| TIME USED ON INSTAGRAM (in minutes) | 30 | 45 | 58 | 63 | 75 | 90  |
|-------------------------------------|----|----|----|----|----|-----|
| TIME USED ON TIKTOK (in minutes)    | 40 | 55 | 70 | 60 | 90 | 100 |




| 1.1 | r = 0.96                                                                                                                                                                                   | ✓ answer/antwoord (1)                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1.2 | Very strong /Baie sterk                                                                                                                                                                    | ✓ answer/antwoord Accept: Strong Aanvaar: Sterk (1)                                               |
| 1.3 | $a = 8,12$ $b = 1,01$ $\hat{y} = 8,12 + 1,01x$ NOTE: If equation only with the values with $a$ and $b$ , swopped: award 1 mark.  Indien slegs die vergelyking gegee word met $a$ en $b$ se | √ a = 8,12 $ √ b = 1,01 $ $ √ ŷ = 8,12 + 1,01x $ Answer only: Full marks Slegs antwoord: Volpunte |
| 1.4 | waardes omgeruil: 1 punt<br>$\hat{y}=8,12+1,01(115)$<br>= 124,27 $\approx$ 124 minutes/minute<br><b>OR</b>                                                                                 | ✓ substitute/vervang 115 ✓ answer/antwoord  OR                                                    |
|     | $\hat{y} = 124,80 \approx 125 \text{ minute} \text{ (calculator)}$                                                                                                                         | ✓ ✓ answer/antwoord (2)                                                                           |



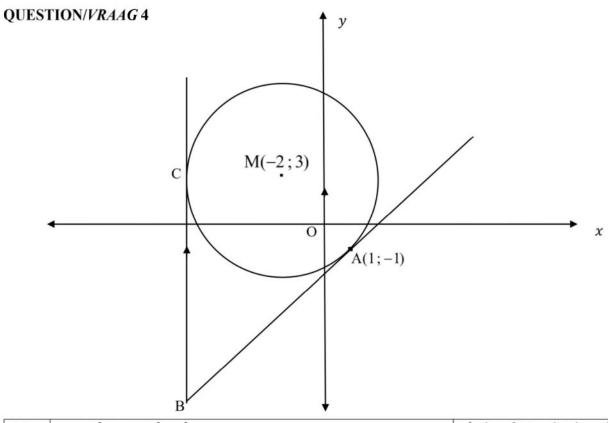

| 1.5 $73,4 = \frac{\sum x}{10}$ <b>OR/OF</b> $73,4 = \frac{\sum x}{20}$      | ✓ 1 468 minutes/minute                              |
|-----------------------------------------------------------------------------|-----------------------------------------------------|
| Total/Totaal = 734 minutes/minute                                           | $\sqrt{\frac{1468}{60}} = 24,47 \text{ hours/} ure$ |
| Total for Instagram and TikTok = 1 468 minutes                              |                                                     |
| Totaal vir Instagram en TikTok = 1 468 minute                               |                                                     |
| $\frac{1 \cdot 468}{60} = 24,47$ ∴ Yes I agree. More than a day was spent./ | ✓ conclusion/gevolgtrekking                         |
| ∴ Ja, ek stem saam. Meer as 'n dag is spandeer.                             | (3)                                                 |
|                                                                             | [10]                                                |





| 2.1.1 | 25 learners/leerders                                                                                  | ✓ answer/Antwoord (1)                |
|-------|-------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2.1.1 | 23 leathers/teerders                                                                                  | diswei/Antwoord (1)                  |
| 2.1.2 | a=3                                                                                                   | $\sqrt{a}=3$                         |
|       | b = 6                                                                                                 | $\checkmark b = 6 \tag{2}$           |
|       |                                                                                                       |                                      |
| 2.1.3 | 25 - 19 = 6 learners/leerders                                                                         | √ 6                                  |
|       |                                                                                                       |                                      |
|       | $\frac{6}{25} \times 100 = 24\%$                                                                      | √ 24%                                |
|       | 23                                                                                                    | 24%                                  |
|       | ∴ 24% of the learners spent more than R175/                                                           |                                      |
|       | van die leerders het meer as R175 gespandeer                                                          | (2)                                  |
|       |                                                                                                       | (-)                                  |
| 2.2   | $\overline{x} - 2\sigma = 4.8$                                                                        | ✓ ✓ equation/ vergelyking            |
|       | $13,20-2\sigma=4,8$                                                                                   |                                      |
|       | $-2\sigma = -8.4$                                                                                     | ( ( - 1 2                            |
|       | $\sigma = 4,2$                                                                                        | $\checkmark \checkmark \sigma = 4,2$ |
|       | OR                                                                                                    | OR                                   |
|       |                                                                                                       | OK                                   |
|       | $\overline{x} + 2\sigma = 9,2$                                                                        | ✓ ✓ equation/ vergelyking            |
|       | $13,20+2\sigma=9,2$                                                                                   | 1 0 7 0                              |
|       | $2\sigma = -4$                                                                                        | $\checkmark \checkmark 2\sigma = -4$ |
|       |                                                                                                       |                                      |
|       | OR                                                                                                    | OR                                   |
|       | The interval is incorrect/meaningless because 13,20 < 9,2 which                                       | V V V                                |
|       | is mean < upperlimit, therefore no further calculations can be                                        | explanation/verduideliking           |
|       | done. / Die gegewe interval is verkeerd / betekenisloos, want                                         |                                      |
|       | 13,20 < 9,2, dit is die gemiddeld < boonste limiet. Dus kan geen verdere berekenings gemaak word nie. |                                      |
|       |                                                                                                       | (4)                                  |
|       | - DM4                                                                                                 | [9]                                  |



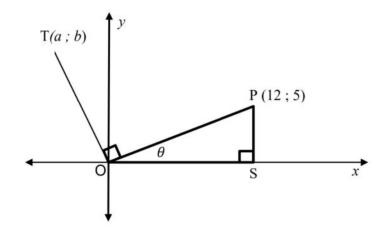

| $m_{AB} = \tan 135^{\circ} = -1$                                                                                                                                                                                                | $\checkmark m_{AB} = \tan 135^{\circ}$                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                 | ✓ answer                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                 | (2)                                                                                                                                                                                                                                                                                       |
| $m_{AB} = \frac{-2 - 4}{p - (-1)}$ $-1 = \frac{-6}{p + 1}$ $p + 1 = 6$ $p = 5$                                                                                                                                                  | ✓ correct substitution of A and B into gradient formula/korrekte substitusie van A en B in die gradiënt formule ✓ equate to/gelykstel aan -1 (2)                                                                                                                                          |
| $\frac{5+x_c}{2} = 0  \text{and/en}  \frac{-2+y_c}{2} = -4$ $x_c = -5  \text{and/en}  y_c = -8+2$ $C(-5;-6)  y_c = -6$ NOTE: Does not have to be in coordinate form Let op: Dit is nie nodig om in koördinaatvorm te skryf nie. | $\checkmark x_{\rm C} = -5$ $\checkmark y_{\rm C} = -6$ (2)                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                 | $m_{AB} = \frac{-2-4}{p-(-1)}$ $-1 = \frac{-6}{p+1}$ $p+1=6$ $p=5$ $\frac{5+x_c}{2} = 0  \text{and/en}  \frac{-2+y_c}{2} = -4$ $x_c = -5  \text{and/en}  y_c = -8+2$ $C(-5;-6)  y_c = -6$ $NOTE: Does not have to be in coordinate form Let op: Dit is nie nodig om in koördinaatvorm te$ |



| 3.4 | $m_{AC} = \frac{4 - (-6)}{-1 - (-5)} = \frac{10}{4} = \frac{5}{2}$              | ✓ correct substitution of A<br>and C into gradient<br>formula/korrekte<br>substitusie van A en C in |
|-----|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|     | Substitute/Vervang A(-1; 4)                                                     | die gradiënt formule                                                                                |
|     | $y-4=\frac{5}{2}(x-(-1))$ <b>OR/OF</b> $4=\frac{5}{2}(-1)+c$                    | $\checkmark m_{AC} = \frac{5}{2}$                                                                   |
|     | $y = \frac{5}{2}x + \frac{5}{2} + 4$ $4 = \frac{-5}{2} + c$                     | ✓ subs of <i>m</i> and point A or C/vervang <i>m</i> en punt A                                      |
|     | $y = \frac{5}{2}x + \frac{13}{2} \qquad c = 6\frac{1}{2}$                       | of C                                                                                                |
|     | $y = \frac{5}{2}x + 6.5$ $y = \frac{5}{2}x + 6\frac{1}{2}$                      | ✓ equation/vergelyking (4)                                                                          |
|     |                                                                                 | (.)                                                                                                 |
| 3.5 | $\tan \alpha = \frac{5}{2}$                                                     | $\sqrt{\tan \alpha} = \frac{5}{2}$                                                                  |
|     | $\alpha = 68,20^{\circ}$                                                        | $\checkmark \alpha = 68,20^{\circ}$                                                                 |
|     | $\hat{CAB} = 135^{\circ} - 68,20^{\circ}$ (Ext $\angle$ of $\Delta$ )           | ✓answer/antwoord                                                                                    |
|     | = 66,8°                                                                         | (3)                                                                                                 |
| 3.6 | Subst/Vamana A ( 1 · 4) OE/OE Subst/Vamana B(5 · 2)                             |                                                                                                     |
| 3.0 | Subst./Vervang A (-1; 4) OF/OF Subst/Vervang B(5; -2)                           |                                                                                                     |
|     | E: $4 = -1(-1) + c$ OR/OF $y + 2 = -1(x - 5)$<br>y + 2 = -x + 5<br>y = -x + 3   | ✓ value of c/waarde van c                                                                           |
|     | E(0; 3)                                                                         |                                                                                                     |
|     | F(0; -4)                                                                        |                                                                                                     |
|     | Area/Opp $\triangle BEF = \frac{1}{2} \times EF \times \perp h$                 |                                                                                                     |
|     | $=\frac{1}{2}\times7\times5$                                                    | ✓ $\bot$ height/hoogte = 5                                                                          |
|     | = 17,5 square units/vierkante eenhede                                           | √answer/antwoord                                                                                    |
|     | OR/OF                                                                           | OR/OF                                                                                               |
|     | OR/OF<br>E: $4 = -1(-1) + c$                                                    |                                                                                                     |
|     | $ \begin{array}{c} 3 = c \\ E(0; 3) \end{array} $                               | ✓ value of c/waarde van c                                                                           |
|     | $ \begin{array}{c} E(0,3) \\ F\hat{E}B = 45^{\circ} \end{array} $               |                                                                                                     |
|     | $BE^2 = (5-0)^2 + (-2-3)^2$                                                     |                                                                                                     |
|     | $BE = \sqrt{50}$                                                                | $\checkmark BE = \sqrt{50}$                                                                         |
|     | Area/ $Opp \Delta BEF = \frac{1}{2} \times EF \times BE \times \sin F \hat{E}B$ |                                                                                                     |
|     | $= \frac{1}{2} \times 7 \times \sqrt{50} \times \sin 45^{\circ}$                |                                                                                                     |
|     | =17,5 square units / vierkante eenhede                                          | ✓answer/antwoord (3)                                                                                |
|     | MARKET SALM SALVANA                                                             |                                                                                                     |

| OR/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       | OR/OF                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| l I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A = -1(-1) + c<br>A = -1(-1) + c<br>A = -1(-1) + c<br>A = -1(-1) + c                                  | ✓ value of c/waarde van c                                                                                                  |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a / Opp \Delta FQB = \frac{1}{2} \times 2 \times 5 = 5$                                              | ✓ $\bot$ height/hoogte = 5                                                                                                 |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $a / Opp \Delta EQB = \frac{1}{2} \times 5 \times 5 = 12,5$                                           |                                                                                                                            |
| Are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ea/Opp \Delta EFB = 5+12,5$                                                                          |                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =17,5 square units / vierkante eenhede                                                                | ✓answer/antwoord (3)                                                                                                       |
| $ \sqrt{(t+1)^2 + 2t^2} $ $ t^2 + 2t^2 - 3t^2 -$ | $\frac{=5\sqrt{5}}{+1)^{2} + (t-4)^{2}} = (5\sqrt{5})$ $2t + 1 + t^{2} - 8t + 16 = 125$ $3t - 54 = 0$ | ✓ substitute A and K into distance formula/ vervang A en K in die afstandformule ✓ equating/gelykstelling ✓ standard form/ |
| t=9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9) $(t+6) = 0$<br>9 $(n.a)$ or/of $t = -6$                                                            | standaardvorm ✓ factors/faktore                                                                                            |
| K(-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6;-6)                                                                                                 | $\checkmark K(-6;-6)$                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOTE: Must be in coordinate form. Let op: Moet in koördinaatvorm wees.                                | (5)                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       | [21]                                                                                                                       |

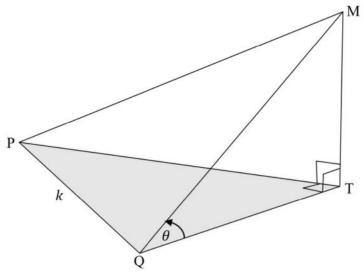





| 4.1 | $(x+2)^{2} + (y-3)^{2} = r^{2}$ $(1+2)^{2} + (-1-3)^{2} = r^{2}$ $9+16 = r^{2}$ $\therefore (x+2)^{2} + (y-3)^{2} = 25$ OR/OF | ✓ subs of M and A into the distance formula/ vervang M en A in die afstandformule ✓ r² = 25 ✓ equation/vergelyking             |
|-----|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|     | $AM = \sqrt{(-2-1)^2 + (3+1)^2}$ $AM = \sqrt{9+16}$ $r = 5$ $\therefore r^2 = 25$ $\therefore (x+2)^2 + (y-3)^2 = 25$         | OR/OF  ✓ subs of M and A into the distance formula/ vervang M en A in die afstandformule  ✓ r² = 25 ✓ equation/vergelyking (3) |
| 4.2 | C(-2-5;3) (by symmetry/deur simmetrie)<br>C(-7;3)                                                                             | $\sqrt{x_c} = -7$ $\sqrt{y_c} = 3$ (2)                                                                                         |



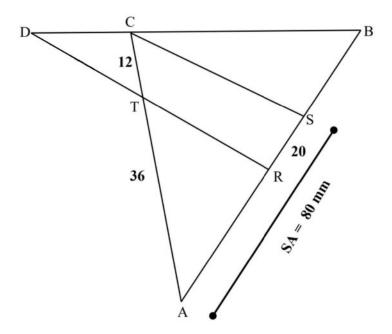
|     |                                                                               | 2 2                                                            |
|-----|-------------------------------------------------------------------------------|----------------------------------------------------------------|
| 4.3 | $m_{\text{AM}} = \frac{3 - (-1)}{-2 - 1} = -\frac{4}{3}$                      | ✓subs A and M into                                             |
|     | $m_{AM} = \frac{1}{-2-1} = \frac{1}{3}$                                       | gradient formula/                                              |
|     | 3 ( ):                                                                        | vervang A en M in die                                          |
|     | $m_{AB} = \frac{3}{4}$ (radius $\perp$ tangent/raaklyn)                       | gradiënt formule                                               |
|     | 3                                                                             | $ \checkmark m_{\text{radius}} = -\frac{4}{3} $                |
|     | $y-(-1)=\frac{3}{4}(x-1)$ (subst./vervang A(1;-1))                            | ]                                                              |
|     | 2 2                                                                           | $\checkmark m_{\text{tangent}} = \frac{3}{4}$                  |
|     | $y = \frac{3}{4}x - \frac{3}{4} - 1$                                          | 4                                                              |
|     |                                                                               | $\checkmark$ substitute $m$ and                                |
|     | $y = \frac{3}{4}x - \frac{7}{4}$                                              | A/vervang m en A                                               |
|     | 4 4                                                                           | ✓ equation/vergelyking                                         |
|     |                                                                               | (5)                                                            |
| 4.4 | $B(-7; y_R)$                                                                  |                                                                |
| 1.7 |                                                                               |                                                                |
|     | subs./vervang B(-7; y <sub>B</sub> ) into eqn of AB/in die vergelyking van AB |                                                                |
|     | $y_{\rm B} = \frac{3}{4}(-7) - \frac{7}{4}$                                   | $\checkmark$ subs./vevang $x = -7$                             |
|     | 7 7                                                                           |                                                                |
|     | $y_{\rm B} = -7$                                                              | $\checkmark y_{\rm B} = -7$                                    |
|     | B(-7;-7)                                                                      |                                                                |
|     | BC = 10 units/eenhede                                                         |                                                                |
|     |                                                                               | ✓BC = 10                                                       |
| 1.5 | 2 22 2 2 2                                                                    | (3)                                                            |
| 4.5 | $(x-1)^2 + (y+1)^2 = 1$                                                       | $\checkmark$ LHS/ <i>LK</i><br>$\checkmark$ RHS/ <i>RK</i> (2) |
|     |                                                                               | $\checkmark$ RHS/ <i>RK</i> (2)                                |
| 1.6 |                                                                               |                                                                |
| 4.6 | $r_2 - r_1 < MN < r_2 + r_1$                                                  | ✓ value of 1 and 9                                             |
|     | 1  or/of $1 < -2 - p < 9$                                                     | (Sum and difference of                                         |
|     | $-1$                                                                          | radii)/Waarde van 1 en 9<br>(som en verskil van                |
|     | $-1$                                                                          | radiusse)                                                      |
|     | 1                                                                             | $\checkmark$ $\checkmark$ $-1$                                 |
|     |                                                                               | ✓✓ -11< p<-3                                                   |
|     | OR/OF                                                                         | (5)                                                            |
|     | Two circles will touch when:/ Twee sirkels sal sny indien:                    | OR/OF                                                          |
|     | Distance between centre/Afstand tussen middelpunte = $r_1 + r_2$              | ✓value of 1 and 9                                              |
|     |                                                                               | (Sum and difference of                                         |
|     | or /of                                                                        | radii)/Waarde van 1 en 9                                       |
|     | distance between centres/ Afstand tussen middelpunte = $r_2 - r_1$            | (som en verskil van                                            |
|     | $\sqrt{(p+2)^2+(3-3)^2}=4+5$ or $\sqrt{(p+2)^2+(3-3)^2}=5-4$                  | radiusse)                                                      |
|     | $(p+2)^2 = 9^2$ or $/$ of $(p+2)^2 = 1$                                       |                                                                |
|     |                                                                               |                                                                |
|     | $p+2=\pm 9$ or/of $p+2=\pm 1$                                                 |                                                                |
|     | $p = \pm 9 - 2$ or of $p = -2 \pm 1$                                          |                                                                |
|     | p = -11  or  /  of  p = 7  or  /  of  p = -3  or  /  of  p = -1               |                                                                |
|     | Two circles intersect in two different points if / twee sirkels sny           | $\checkmark \checkmark -1$                                     |
|     | in twee verskillende punte as                                                 |                                                                |
|     | $-11$                                                                         | $\checkmark \checkmark -11$                                    |
|     |                                                                               | [20]                                                           |
|     | ALTERNATION CATEVALL                                                          | [20]                                                           |


5.1



| 5.1.1 | $\tan \theta = \frac{5}{12}$                                                                                                                                                                                                                                          | ✓ answer/antwoord (1)                                                                                         |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 5.1.2 | $r^2 = 5^2 + 12^2$ $r = 13$ $\sin \theta = \frac{5}{13}$                                                                                                                                                                                                              | ✓ value of/waarde van r  ✓ answer/antwoord  Answer only: Full marks  Slegs antwoord: Volpunte  (2)            |
| 5.1.3 | $\cos(90^\circ + \theta) = \frac{a}{19,5}$ $-\sin\theta = \frac{a}{19,5}$                                                                                                                                                                                             | ✓ ratio/verhouding ✓ $-\sin\theta$                                                                            |
|       | $-\frac{5}{13} = \frac{a}{19,5}$ $a = \frac{-5 \times 19,5}{13}$                                                                                                                                                                                                      | ✓ substitute/vervang sin θ                                                                                    |
|       | a = -7,5                                                                                                                                                                                                                                                              | ✓ value of/waarde van a (4)                                                                                   |
| 5.2   | $\frac{\sin(360^{\circ} - 2x).\sin(-x)}{\sin(90^{\circ} + x)} + 2\cos^{2}(180^{\circ} + x)$ $= \frac{(-\sin 2x).(-\sin x)}{\cos x} + 2\cos^{2}x$ $= \frac{(-2\sin x.\cos x).(-\sin x)}{\cos x} + 2\cos^{2}x$ $= 2\sin^{2}x + 2\cos^{2}x$ $= 2(\sin^{2}x + \cos^{2}x)$ | $\sqrt{-\sin 2x}$ $\sqrt{-\sin x}$ $\sqrt{\cos x}$ $\sqrt{2\cos^2 x}$ $\sqrt{\sin 2x} = 2\sin x \cdot \cos x$ |
|       | = 2                                                                                                                                                                                                                                                                   | ✓answer/antwoord (6)                                                                                          |

| 5.3   | $\cos 42^{\circ} = 2\cos^2 21^{\circ} - 1$                                                                                                                                                         | ✓double angle expansion/                                                                                                                                  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | $\sqrt{k} = 2\sin^2 69^\circ - 1$                                                                                                                                                                  | dubbelhoek uitbreiding                                                                                                                                    |
|       | $\frac{\sqrt{k}+1}{2} = \sin^2 69^\circ$                                                                                                                                                           | ✓ co-function/ko-funksie<br>✓ answer/antwoord (3)                                                                                                         |
|       | 2                                                                                                                                                                                                  | (6)                                                                                                                                                       |
| 5.4.1 | LHS/LK = $\frac{\sin 5x \cdot \cos 3x - \cos 5x \cdot \sin 3x}{\tan 2x} - 1$ = $\frac{\sin (5x - 3x)}{\frac{\sin 2x}{\cos 2x}} - 1$ = $\cos 2x - 1$ = $(1 - 2\sin^2 x) - 1$ = $-2\sin^2 x$ = $RHS$ | $\sqrt{\sin(5x-3x)}$ $\sqrt{\tan 2x} = \frac{\sin 2x}{\cos 2x}$ $\sqrt{\cos 2x-1}$ $\sqrt{\text{double angle identity}/\text{dubbelhoek identiteit}}$ (4) |
|       |                                                                                                                                                                                                    |                                                                                                                                                           |
| 5.4.2 | Undefined if/Ongedefinieërd as $\tan 2x = 0$<br>$x = 0^{\circ}$                                                                                                                                    | ✓ x = 0°                                                                                                                                                  |
|       | or/of<br>$\tan 2x$ is undefined if/ongedefinieërd as $2x = 90^{\circ}$<br>$x = 45^{\circ}$                                                                                                         | $\checkmark x = 45^{\circ} \tag{2}$                                                                                                                       |
| 5.5.1 | 2                                                                                                                                                                                                  |                                                                                                                                                           |
| 5.5.1 | $f(x) = 2\cos x - \sin^2 x$ $= 2\cos x - (1 - \cos^2 x)$ $= 2\cos x - 1 + \cos^2 x$                                                                                                                | √identity/identiteit                                                                                                                                      |
|       | $= \cos^2 x + 2\cos x + 1 - 1 - 1$ $= (\cos x + 1)^2 - 2$                                                                                                                                          | ✓ completing the square/voltooi<br>die vierkant (2)                                                                                                       |
| 5.5.2 | Maximum of/Maksimum van $\cos x = 1$                                                                                                                                                               | $\sqrt{\text{Max. of}/\text{Maks. van }\cos x} = 1$                                                                                                       |
| 0.5.2 | Max. of/Maks. van $(\cos x+1)^2$ is $(1+1)^2=4$                                                                                                                                                    | Muni of france, van cos x = 1                                                                                                                             |
|       | Max. of/Maks. van $(\cos x + 1)^2 - 2$ is 2                                                                                                                                                        | ✓answer/antwoord                                                                                                                                          |
|       |                                                                                                                                                                                                    | Answer only: Full marks Slegs antwoord: Volpunte                                                                                                          |
|       |                                                                                                                                                                                                    | (2)                                                                                                                                                       |
|       |                                                                                                                                                                                                    | [26]                                                                                                                                                      |


| QUEST | TION/VRAAG 6                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.1   | $\cos(x-30^{\circ}) + 2\sin x = 0$ $\cos x \cos 30^{\circ} + \sin x \sin 30^{\circ} + 2\sin x = 0$ $\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x + 2\sin x = 0$ $\sqrt{3}\cos x + \sin x + 4\sin x = 0$                                                                                                                                    | ✓ expansion of compound angle/ uitbreiding van saamgestelde hoek  ✓ special angles/spesiale hoeke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | $5\sin x = -\sqrt{3}\cos x$                                                                                                                                                                                                                                                                                                                | √simplification/vereenvoudiging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | $\tan x = -\frac{\sqrt{3}}{5}$ $\tan x = \frac{-\sqrt{3}}{5}$                                                                                                                                                                                                                                                                              | $\sqrt{5}\sin x = -\sqrt{3}\cos x \tag{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.2   | tan $x = \frac{-\sqrt{3}}{5}$<br>ref. angle/verwys. $hoek = 19,106^{\circ}$<br>$x = 160,89^{\circ} + k.180$ ; $k \in \mathbb{Z}$<br>$x = -19,11^{\circ}$ or/of $x = 160,89^{\circ}$<br>OR/OF<br>tan $x = \frac{-\sqrt{3}}{5}$<br>$x = -19,11^{\circ} + k.180^{\circ}$ ; $k \in \mathbb{Z}$<br>$x = -19,11^{\circ}$ or $x = 160,89^{\circ}$ | ✓ ref angle/verwys. hoek  ✓ $x = -19,11^{\circ}$ ✓ $x = 160,89^{\circ}$ OR/OF  ✓ $x = -19,11^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$ ✓ $x = -19,11^{\circ}$ ✓ $x = 160,89^{\circ}$ (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.3.1 | Amplitude = 2                                                                                                                                                                                                                                                                                                                              | ✓ answer/antwoord (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6.3.2 |                                                                                                                                                                                                                                                                                                                                            | and we come to the company of the co |
| 0.3.2 | -150° -120° -90° -60° -30° 30° 6                                                                                                                                                                                                                                                                                                           | 0° 90° 120° 150° 180° 210°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | ✓both x-intercepts/albei x-afsnitte ✓turning points/draaipunte (-150°; -1), (30°; 1), (2 ✓shape/vorm                                                                                                                                                                                                                                       | 210°;-1) (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.3.3 | (a) $x \in (-19,11^{\circ};160,89^{\circ})$<br>or<br>$-19,11^{\circ} < x < 160,89^{\circ}$                                                                                                                                                                                                                                                 | ✓ Correct intervals/korrekte intervalle ✓ Correct notations/korrekte notasies (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | (b) $x = 180^{\circ}$                                                                                                                                                                                                                                                                                                                      | √ answer (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | MAXXIII CA EX                                                                                                                                                                                                                                                                                                                              | [14]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

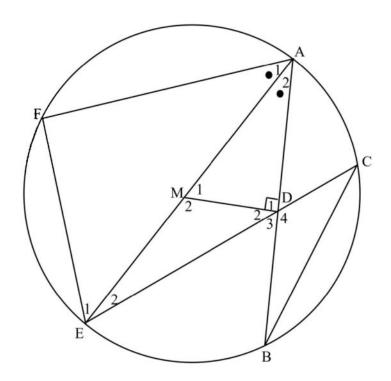


| 7.1 | $Area/\text{Opp} = \frac{1}{2} \times k \times 2k \times \sin \text{MPQ}$ $2k^2 \sin \theta \cos \theta = \frac{1}{2} \times k \times 2k \times \sin \text{MPQ}$ | ✓ subs in area rule/vervang in opp. reël                                         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|     | $2k^2 \cdot \sin\theta \cos\theta = \frac{1}{2} \times k \times 2k \times \sin M\hat{P}Q$                                                                        |                                                                                  |
|     | $k^2 \cdot \sin 2\theta = k^2 \times \sin M\hat{P}Q$                                                                                                             | ✓area of/van                                                                     |
|     | $\sin 2\theta = \sin M\hat{P}Q$                                                                                                                                  | $\Delta MPQ = k^2 \times \sin M\hat{P}Q$                                         |
|     | $\hat{MPQ} = 2\theta$                                                                                                                                            | $\checkmark 2k^2 \cdot \sin \theta \cdot \cos \theta = k^2 \sin 2\theta \tag{3}$ |
| 7.2 | $MQ^2 = k^2 + (2k)^2 - 2(k)(2k)\cos 2\theta$                                                                                                                     | ✓ correct subst into cosine rule/korrekte                                        |
|     | $MQ^2 = k^2 + 4k^2 - 4k^2 \cos 2\theta$                                                                                                                          | substitusie in die cos reël                                                      |
|     | $=5k^2-4k^2\cos 2\theta$                                                                                                                                         | $\sqrt{5k^2-4k^2\cos 2\theta}$                                                   |
|     | $=5k^2-4k^2(1-2\sin^2\theta)$                                                                                                                                    | $\checkmark \cos 2\theta = 1 - 2\sin^2 \theta$                                   |
|     | $=5k^2-4k^2+8k^2\sin^2\theta$                                                                                                                                    |                                                                                  |
|     | $=k^2+8k^2\sin^2\theta$                                                                                                                                          |                                                                                  |
|     | $=k^2(1+8\sin^2\theta)$                                                                                                                                          | $\checkmark k^2(1+8\sin^2\theta)$                                                |
|     | $MQ = k\sqrt{1 + 8\sin^2\theta}$                                                                                                                                 | (4                                                                               |
|     |                                                                                                                                                                  | (1                                                                               |
| 7.3 | $MQ = 139, 5\sqrt{1 + 8\sin^2 42^\circ}$                                                                                                                         | ✓ value of/waarde van MQ                                                         |
|     | MQ = 298,6045                                                                                                                                                    | ✓ratio/verhouding                                                                |
|     | $\frac{MT}{MQ} = \sin \theta$                                                                                                                                    |                                                                                  |
|     |                                                                                                                                                                  | $\checkmark MT = 200 \text{ m}$                                                  |
|     | $MT = 298,6045 \times \sin 42^{\circ}$                                                                                                                           | 1 mark penalty for incorrect                                                     |
|     | MT = 199,805<br>$MT \approx 200 m$                                                                                                                               | rounding/ Penaliseer met 1 punt vir                                              |
|     | W11 ~ 200 m                                                                                                                                                      | verkeerde afronding                                                              |
|     | . WM4                                                                                                                                                            | [10                                                                              |

| 8.1                 | $\frac{R}{4\sqrt{3}}$ $\frac{1}{2}$ $\frac{1}{2}$ | Z<br>20°<br>21<br>2 0 2 S                                                              |            |     |
|---------------------|---------------------------------------------------|----------------------------------------------------------------------------------------|------------|-----|
| 8.1.1               | $\hat{S}_1 = 10^{\circ}$                          | $\angle$ centre = 2 x $\angle$ at circumference/midpt $\angle$ = 2 x omtrek $\angle$   | √S<br>√R   | (2) |
| 8.1.2               | R <sub>3</sub> = 20°                              | Alt $\angle$ 's/Verwis. $\angle$ <sup>e</sup> , RQ//YO                                 | ✓S/R       | (1) |
| 8.1.3               | P=150°                                            | opposite $\angle^s$ of cyclic quad/teenoorst. $\angle^e$ van koordevierhoek            | ✓S<br>✓R   | (2) |
| 8.1.4               | $\hat{R}_3 + \hat{R}_4 = 90^\circ$                | radius ⊥ tangent/raaklyn                                                               | √R         |     |
| Accessorability (2) | $\hat{R}_4 = 90^\circ - 20^\circ = 70^\circ$      | ,                                                                                      | √S         |     |
|                     | $\hat{S}_2 = \hat{R}_4 = 70^\circ$                | tan chord theorem/raaklyn koord stelling                                               | √S √R      |     |
|                     | OR/OF                                             |                                                                                        | OR/OF      | (4) |
|                     | $\hat{R}_1 + \hat{R}_2 = 90^\circ$                | radius I tangentlus aldum                                                              |            |     |
|                     | $\hat{R}_1 = 80^{\circ}$                          | radius ⊥ tangent/raaklyn                                                               | √R<br>√S   |     |
|                     |                                                   | tan chord theorem/raaklyn koord stelling                                               | ✓S<br>✓S/R |     |
|                     | $\hat{Q}_2 = 80^{\circ}$ $\hat{S}_2 = 70^{\circ}$ | sum of $\angle$ <sup>s</sup> in a triangle/binne $\angle$ <sup>e</sup> van 'n driehoek | √S         | (4) |

| $\hat{T}_1 = 90^{\circ}$                                      | line from centre to midpoint of chord/lyn vanaf middelpunt tot middelpunt van koord    | √S/R       |      |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------|------------|------|
| $\hat{O}_2 = 70^{\circ}$ $\hat{R}_4 = \hat{O}_2 = 70^{\circ}$ | sum of $\angle$ <sup>s</sup> in a triangle/binne $\angle$ <sup>e</sup> van 'n driehoek | √S         |      |
| : XRY is a tangent/<br>'n raaklyn                             | converse tan chord theorem/omgekeerde raaklyn koord stelling                           | √R         | (3)  |
| $\hat{R}_1 + \hat{R}_2 = 90^{\circ}$                          | OR/ <i>OF</i> radius ⊥ tangent/ <i>raaklyn</i>                                         | ✓S<br>✓S/R |      |
| $\hat{T}_1 = 90^{\circ}$ $O\hat{R}Y = \hat{T}_1$              | line from centre to midpoint of chord/lyn vanaf middelpunt tot middelpunt koord        | √R         |      |
| :. XRY is a tangent/<br>in raaklyne                           | converse tan chord theorem/omgekeerde<br>raaklyn koord stelling                        |            | (3)  |
|                                                               |                                                                                        |            | [12] |




| 9.1 | $\frac{\text{CT}}{\text{TA}} = \frac{12}{36} = \frac{1}{3}$ |                                                                                                            | √S     |  |
|-----|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------|--|
|     | $\frac{SR}{RA} = \frac{20}{60} = \frac{1}{3}$               |                                                                                                            | √S     |  |
|     | $\therefore \frac{CT}{TA} = \frac{SR}{RA}$                  |                                                                                                            |        |  |
|     | ∴ CS   TR                                                   | line divides the sides of $\Delta$ in proportion/lyn verdeel die sye van die $\Delta$ in verhouding        | √R (3) |  |
|     | OR/OF                                                       |                                                                                                            |        |  |
|     | $\frac{SR}{SA} = \frac{20}{80} = \frac{1}{4}$               |                                                                                                            | √S     |  |
|     | $\frac{\text{CT}}{\text{CA}} = \frac{12}{48} = \frac{1}{4}$ |                                                                                                            | √S     |  |
|     | $\therefore \frac{CT}{CA} = \frac{SR}{SA}$                  |                                                                                                            |        |  |
|     | ∴ CS    TR                                                  | line divides the sides of $\Delta$ in proportion/<br>lyn verdeel die sye van die $\Delta$ in<br>verhouding | ✓R (3) |  |

| 0   |                                                                                 |                             |
|-----|---------------------------------------------------------------------------------|-----------------------------|
| 9.2 | $\frac{AR}{RB} = \frac{2}{3}$                                                   |                             |
|     | $\frac{60}{RB} = \frac{2}{3}$                                                   | √S                          |
|     | RB 3<br>RB = 90 mm                                                              |                             |
|     | $\therefore SB = 70 \text{ mm}$                                                 | √value of/waarde<br>van RB  |
|     | SB = 70 min                                                                     | van KB                      |
|     | $\frac{BS}{SR} = \frac{BC}{CD}$ proportion theorem/eweredigheidstelling CS  TR  |                             |
|     | SR - CD proportion theorems ewer eargnet asterning CS  TK                       | ✓S✓R                        |
|     | 70 2 2                                                                          |                             |
|     | $\frac{70}{20} = \frac{2x}{\frac{1}{2}x + 1}$                                   | ✓ substitution/ substitusie |
|     | $\frac{1}{2}x+1$                                                                | suosittuste                 |
|     | 40x = 35x + 70                                                                  | ✓answer/antwoord            |
|     | x = 14  mm                                                                      | (6)                         |
|     | OR/OF                                                                           |                             |
|     | ONOT                                                                            | ✓ value of/waarde           |
|     | 2k = 60                                                                         | van k                       |
|     | $\therefore k = 30$                                                             | ✓ value of/waarde           |
|     | $\therefore 3k = 90$                                                            | van 3k                      |
|     | $\frac{SR}{RR} = \frac{DC}{RR}$ prop. theorem/eweredigheidstelling CS  TR       | ✓S ✓R                       |
|     | RB DB                                                                           |                             |
|     | $20 \frac{1}{2}x+1$                                                             |                             |
|     | $\frac{1}{90} = \frac{5}{5}$                                                    | ✓ substitution/ substitusie |
|     | 2                                                                               | substituste                 |
|     | $\frac{20}{90} = \frac{\frac{1}{2}x+1}{\frac{5}{2}x+1}$ $5x+2 = \frac{9}{2}x+9$ |                             |
|     | $\frac{1}{2}x = 7$                                                              |                             |
|     |                                                                                 | 7                           |
|     | $\therefore x = 14 \text{ mm}$                                                  | ✓ answer/antwoord (6)       |
|     |                                                                                 | [9]                         |

| 10.1 | A  A  B  C  NB: No construction/Geen konstruksie nie 0/6                                                  |                 |
|------|-----------------------------------------------------------------------------------------------------------|-----------------|
|      |                                                                                                           | ✓ construction/ |
|      | On AB, mark of AP = DE and on AC, mark off AQ = DF./Op AB, merk $AP = DE$ of en op AC, merk $AQ = DF$ af. | konstruksie     |
|      | Draw/Trek PQ.                                                                                             |                 |
|      | Proof/ <i>Bewys</i> : In ΔAPG and/en ΔDEF                                                                 |                 |
|      |                                                                                                           |                 |
|      | $\hat{A} = \hat{D}$ given/gegee                                                                           |                 |
|      | AQ = DF construction/konstruksie<br>AP = DE construction/konstruksie                                      |                 |
|      | $\therefore \triangle APQ = \triangle DEF  S \angle S$                                                    | √S √R           |
|      | APQ=Ê                                                                                                     | √s              |
|      | $\hat{APQ}=\hat{B}  [\hat{E}=\hat{B}]$                                                                    |                 |
|      | ∴ PQ  BC corresponding angles are equal/ooreenk. hoeke is gelyk                                           | √R              |
|      | $\frac{AB}{AP} = \frac{AC}{AQ}$ line    to one side of $\Delta/lyn$    aan een sy van $\Delta$            | ✓S/R            |
|      | AP = DE  and/en AQ = DF                                                                                   |                 |
|      | $\therefore \frac{AB}{DE} = \frac{AC}{DF}$                                                                | (6)             |



10.2



| Ê= 90°                                                                                                 | ∠ in semi - circle/halwe sirkel                                                                                                                                                                                                                                                                            | ✓S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| In $\triangle$ AEF and/en $\triangle$ AMD                                                              |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\hat{\mathbf{A}}_1 = \hat{\mathbf{A}}_2$                                                              | given/gegee                                                                                                                                                                                                                                                                                                | √s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\hat{F} = \hat{D}_1 = 90^{\circ}$                                                                     | proved/bewys                                                                                                                                                                                                                                                                                               | √S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ∴ ∆AEF     ∆AMD                                                                                        | <b>LLL</b>                                                                                                                                                                                                                                                                                                 | √R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| OR/OF                                                                                                  |                                                                                                                                                                                                                                                                                                            | OR/OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| F=90°                                                                                                  | ∠ in semi - circle/halwe sirkel                                                                                                                                                                                                                                                                            | ✓S/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\hat{A}_1 = \hat{A}_2$ $\hat{F} = \hat{D}_1 = 90^{\circ}$                                             | given/gegee proved/bewys                                                                                                                                                                                                                                                                                   | √S<br>√S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\begin{split} \hat{E}_1 &= \hat{M}_1 \\ \therefore \ \Delta A E F \parallel \Delta A M D \end{split}$ | sum of $\angle$ 's in $\triangle$ /binne $\angle$ e van $\triangle$                                                                                                                                                                                                                                        | √R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                        |                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| I I                                                                                                    | in $\triangle AEF$ and/en $\triangle AMD$ $\hat{A}_1 = \hat{A}_2$ $\hat{F} = \hat{D}_1 = 90^{\circ}$ $\triangle \triangle AEF \parallel \triangle AMD$ $\hat{C} = 90^{\circ}$ in $\triangle AEF$ and/en $\triangle AMD$ $\hat{A}_1 = \hat{A}_2$ $\hat{F} = \hat{D}_1 = 90^{\circ}$ $\hat{E}_1 = \hat{M}_1$ | in ΔAEF and/en ΔAMD $\hat{A}_1 = \hat{A}_2 \qquad \text{given/gegee}$ $\hat{F} = \hat{D}_1 = 90^{\circ} \qquad \text{proved/bewys}$ $\therefore \Delta \text{AEF }     \Delta \text{AMD} \qquad \angle \angle \angle$ $\hat{C} = 90^{\circ} \qquad \angle \text{ in semi-circle/halwe sirkel}$ $\hat{A}_1 = \hat{A}_2 \qquad \text{given/gegee}$ $\hat{F} = \hat{D}_1 = 90^{\circ} \qquad \text{proved/bewys}$ $\hat{E}_1 = \hat{M}_1 \qquad \text{sum of } \angle \text{ 's in } \Delta \text{/binne } \angle \text{ e van } \Delta$ | in ΔAEF and/en ΔAMD $\hat{A}_1 = \hat{A}_2 \qquad \text{given/gegee}$ $\hat{F} = \hat{D}_1 = 90^\circ \qquad \text{proved/bewys}$ $\therefore \Delta \text{AEF }     \Delta \text{AMD}$ $\angle \angle \angle$ $\hat{F} = 90^\circ \qquad \angle \text{ in semi-circle/halwe sirkel}$ $\hat{A}_1 = \hat{A}_2 \qquad \text{given/gegee}$ $\hat{F} = \hat{D}_1 = 90^\circ \qquad \text{proved/bewys}$ $\hat{E}_1 = \hat{M}_1 \qquad \text{sum of } \angle \text{ 's in } \Delta \text{/binne} \angle \text{ e van } \Delta$ |



| 10.2.2 | AF AE                                                                  | ΔAEF    ΔAMD                                                                        | ✓S/R             |
|--------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------|
| 10.2.2 | $\frac{AF}{AD} = \frac{AE}{AM}$                                        |                                                                                     | - 5/IX           |
|        | but/maar $AE = 2AM$                                                    |                                                                                     |                  |
|        |                                                                        |                                                                                     | √S               |
|        | $\frac{AF}{AD} = \frac{2AM}{AM} = 2$                                   |                                                                                     | ✓answer/antwoord |
|        | 110                                                                    |                                                                                     | (3)              |
| 10.2.3 | In ΔCDB and/en ΔADE                                                    |                                                                                     | √identifying ∆s/ |
|        |                                                                        |                                                                                     | identifiseer ∆e  |
|        | $\hat{C} = \hat{A}_2$                                                  | $\angle s$ in same segment/ $\angle e$ in dieselfde                                 | ✓S/R             |
|        | $\hat{D}_4 = E\hat{D}A$                                                | segment                                                                             | - S/IC           |
|        | $\hat{D}_4 = E\hat{D}A$                                                | vertically opposite ∠'s/regoorstaande                                               | √S               |
|        |                                                                        | ∠e                                                                                  |                  |
|        | ΔCDB     ΔADE                                                          | <b>ZZZ</b>                                                                          | √R               |
|        | $\therefore \frac{CD}{AD} = \frac{DB}{DE}$                             |                                                                                     | √S               |
|        |                                                                        |                                                                                     |                  |
|        | but/maar AD = DB                                                       | line from centre $\perp$ to chord/ <i>lyn vanaf midpt</i> . $\perp$ <i>op koord</i> | ✓S/R             |
|        | $\frac{\text{CD}}{\text{AD}} = \frac{\text{AD}}{\text{DD}}$            | тарі. ± ор кооға                                                                    |                  |
|        | AD DE                                                                  |                                                                                     | (6)              |
|        | $\therefore AD^2 = CD \times DE$                                       |                                                                                     | (6)              |
|        | OD/OF                                                                  |                                                                                     | 6.400 NO.000     |
|        | OR/OF                                                                  |                                                                                     | OR/OF            |
|        | In ΔCDB and/en ΔADE                                                    |                                                                                     | √identifying Δs/ |
|        |                                                                        |                                                                                     | identifiseer ∆e  |
|        | $\hat{C} = \hat{A}_2$                                                  | $\angle s$ in same segment/ $\angle e$ in dieselfde                                 | ✓S/R             |
|        | $\hat{C} = \hat{A}_2$ $\hat{D}_4 = E\hat{D}A$                          | segment                                                                             | ✓S               |
|        | $\hat{D}_4 = E\hat{D}A$                                                | vertically opposite ∠'s/regoorstaande                                               |                  |
|        |                                                                        | ∠e                                                                                  | √R               |
|        | $\hat{\mathbf{B}} = \hat{\mathbf{E}}_2$                                | ∠s in same segment/∠e in dieselfde                                                  |                  |
|        | ACDD III AADE                                                          | segment                                                                             | /6               |
|        | ΔCDB     ΔADE                                                          |                                                                                     | √S               |
|        | $\therefore \frac{\text{CD}}{\text{AD}} = \frac{\text{DB}}{\text{DE}}$ |                                                                                     |                  |
|        | but/maar AD = DB                                                       | line from centre ⊥ to chord/lyn vanaf                                               | ✓S/R             |
|        | $\frac{\text{CD}}{\text{CD}} = \frac{\text{AD}}{\text{CD}}$            | midpt. $\perp$ op koord                                                             |                  |
|        |                                                                        | 1 - I                                                                               |                  |
|        | AD DE                                                                  |                                                                                     |                  |
|        | $AD DE  \therefore AD^2 = CD \times DE$                                |                                                                                     |                  |
|        |                                                                        |                                                                                     |                  |