

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

NOVEMBER 2023

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 27 pages.

Mechanical Technology: Fitting and Machining 2 NSC – Marking Guideline DBE/November 2023

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1	B✓			(1)

1.2 A ✓ (1)

1.3 C ✓ (1)

1.4 $C \checkmark$ (1)

1.5 A ✓ (1)

1.6 B ✓ (1) **[6]**

Mechanical Technology: Fitting and Machining 3

NSC – Marking Guideline

DBE/November 2023

QUESTION 2: SAFETY (GENERIC)

2.1 **Examination checks:**

- Severe bleeding ✓
- Internal bleeding ✓
- Head injuries ✓
- Neck injuries ✓
- Fractures ✓
- Vital signs ✓
- Physical abnormalities ✓

(Any 2 x 1) (2)

2.2 Safety devices on the power-driven guillotine:

- Finger protectors / Fixed guards / Blade guard ✓
- Rear view mirrors ✓
- Rear light curtains ✓
- Automatic sweep-away ✓
- Revolving warning lights ✓
- Two-hand / dual control device ✓
- Additional emergency buttons ✓
- Self-adjusting guards ✓
- Covered footswitch ✓

(Any 2 x 1) (2)

2.3 **Grinding wheel:**

- The wheel should be rated above the speed of the motor. ✓
- Check for cracks on the grinding wheel. ✓
- Check for chips on the grinding wheel. ✓
- Check that the arbor hole is the correct size. ✓
- Must not be contaminated by oil/fluids or grease. ✓
- Correct size of the wheel. ✓
- Correct type of wheel for the material. ✓

(Any 2×1) (2)

2.4 Gas welding equipment – safety devices:

- Valve guard ✓
- Flash back arrestor ✓
- Pressure regulator ✓
- C-clamps on hoses/Parallel hose clips ✓
- Acetylene spindle key must always be in place. ✓
- Cylinder valves. ✓

(Any 2 x 1) (2)

Mechanical Technology: Fitting and Machining 4

NSC – Marking Guideline

DBE/November 2023

2.5 Advantages of process layout of machines are:

- High machine utilisation. ✓
- Better supervision. ✓
- Less interruption in the flow of work. ✓
- Lower equipment costs. ✓
- Better control of total manufacturing costs. ✓
- Greater flexibility. ✓

(Any 2 x 1) (2) [10]

Mechanical Technology: Fitting and Machining 5

NSC – Marking Guideline

DBE/November 2023

QUESTION 3: MATERIALS (GENERIC)

3.1 Colour code of metal:

- To identify the type of metal. ✓
- To identify carbon content especially after the metal was stored. ✓
- To identify the profile/size of the metal. ✓

(Any 1 x 1) (1)

3.2 Tests to determine properties of steel:

3.2.1 **Sound test:**

- Hardness ✓
- Softness ✓

(Any 1 x 1) (1)

3.2.2 **Bending test:**

- Ductility ✓
- Bend strength ✓
- Fracture strength ✓
- Resistance to fracture
- Brittleness ✓
- Elasticity ✓
- Plasticity ✓
- Flexibility ✓

(Any 1 x 1) (1)

3.2.3 **Machining test:**

- Hardness ✓
- Strength ✓

(Any 1 x 1) (1)

3.3 Reasons metal soaked during heat treatment:

- To ensure uniform heat distribution ✓ throughout the metal. ✓
- To achieve a uniform grain structure ✓ after cooling the metal. ✓

(Any 1 x 2) (2)

3.4 Case hardening:

- Carburising ✓
- Nitriding ✓
- Cyaniding ✓

(Any 2 x 1) (2)

3.5 **Annealing process:**

Heating the steel slightly above AC₃, (upper critical temperature) \checkmark soaking it for a required time/period \checkmark and then slow cooling \checkmark back to room temperature.

(3)

Mechanical Technology: Fitting and Machining 6
NSC – Marking Guideline

3.6 Rapid quenching mediums:

■ Brine/Salt water ✓

■ Water ✓

■ Nitrogen ✓

■ Oil ✓

(Any 2 x 1) (2)

3.7 Heat treatment process:
Tempering ✓

(1)
[14]

Mechanical Technology: Fitting and Machining 7

NSC – Marking Guideline

DBE/November 2023

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	D✓		(1)

Mechanical Technology: Fitting and Machining 8

NSC – Marking Guideline

DBE/November 2023

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Disadvantages of compound slide method

- Only short tapers can be cut. ✓
- It causes fatigue to the operator. ✓
- The automatic feed of the machine cannot be used. ✓

(Any 2 x 1) (2)

5.2 **Taper calculations:**

5.2.1 **Length of taper:**

$$\mathsf{Tan}\frac{\theta}{2} = \frac{\mathsf{D-d}}{\mathsf{2} \times l}$$

$$2 \times l = \frac{\mathsf{D-d}}{\tan \frac{\theta}{2}} \checkmark$$

$$2l = \frac{78-55}{\tan 4^{\circ}} \checkmark$$

$$2l = \frac{23}{0,069926811}$$

$$l = \frac{328,9153283}{2} \quad \checkmark$$

$$l = 164,46 \text{ mm } \checkmark$$
 (4)

5.2.2 Tailstock set-over:

Set-over =
$$\frac{L(D-d)}{2l}$$

= $\frac{284,46(78-55)}{2\times164,46}$
= 19,89 mm \checkmark (4)

Mechanical Technology: Fitting and Machining 9

NSC – Marking Guideline

DBE/November 2023

5.3 **Key ways:**

5.3.1 **Width:**

Width =
$$\frac{D}{4}$$

Width =
$$\frac{83}{4}$$
 \checkmark

$$= 20,75 \, \text{mm} \, \checkmark$$
 (2)

5.3.2 Thickness:

Thickness =
$$\frac{D}{6}$$

Thickness =
$$\frac{83}{6}$$

5.3.3 **Length:**

Length = $1,5 \times$ diameter of shaft

=1,5
$$\times$$
 83 \checkmark
=124,50 mm \checkmark (2)

- 5.4 **Straddle milling:**
 - A. Side and face cutter / Milling cutters. ✓
 - B. Arbor / Spacers / Spindle / Axle ✓

Mechanical Technology: Fitting and Machining 10 NSC – Marking Guideline

DBE/November 2023

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Gear terminology:**

6.1.1 **Pitch-circle diameter:**

PCD =
$$m \times T$$
 $CP = m \times \pi$
= $2.5 \times 180 \checkmark$ = $2.5 \times \pi$
= $450 \text{ mm} \checkmark$ $= 7.85 \text{ mm} \checkmark$
OR $PCD = \frac{CP \times T}{\pi}$
= $\frac{7.85 \times 180}{\pi}$
= $450 \text{ mm} \checkmark$ (2)

6.1.2 **Dedendum:**

Dedendum =
$$1,157 \times m$$
 Dedendum = $1,25 \times m$
= $1,157 \times 2,5 \checkmark$ OR = $1,25 \times 2,5 \checkmark$
= $2,89 \text{ mm } \checkmark$ = $3,13 \text{ mm } \checkmark$ (2)

6.1.3 **Outside diameter:**

OD = PCD + 2(m)
=
$$450 + 2(2,5)$$
 \checkmark
= $455 \text{ mm } \checkmark$ (2)

Mechanical Technology: Fitting and Machining 11

NSC – Marking Guideline

DBE/November 2023

6.2 **Dovetails:**

$$W = 136 + 2(DE)$$

 $m = W - [2(AC) + 2(R)]$ **OR** $m = W - 2(AC + R)$ **OR** $m = W - 2(AC) - 2(R)$

6.2.1 Maximum width distance of dove tail: (W)

Calculate DE or y:

$$\tan \theta = \frac{DE}{AD}$$

$$DE = \tan \theta \times AD \checkmark$$

$$= \tan 30^{\circ} \times 50 \checkmark$$

$$= 28,87 \text{ mm} \checkmark$$

$$\tan \theta = \frac{AD}{DE}$$

$$\tan 60^{\circ} = \frac{50}{DE} \checkmark$$

$$DE = \frac{50}{\tan 60^{\circ}} \checkmark$$

$$= 28,87 \text{ mm} \checkmark$$

$$W = 136 + 2(DE) \checkmark$$

$$= 136 + 2(28,87) \checkmark$$

$$= 136 + 57,74$$

$$= 193,74 \text{ mm } \checkmark$$
(6)

DBE/November 2023

6.2.2 Distance between the rollers: (m)

Calculate AC or x:

$$Tan \alpha = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan \alpha} \checkmark$$

$$AC = Tan \theta \times BC \checkmark$$

$$OR$$

$$= \frac{10}{Tan30^{\circ}} \checkmark$$

$$= 17,32 \text{mm} \checkmark$$

$$m = W - [(2(AC) + 2(R)] \checkmark$$

$$= 193,74 - [2(17,32) + 2(10)] \checkmark$$

$$= 193,74 - (34,64 + 20)$$

$$= 139,10 \text{ mm} \checkmark$$

$$OR$$

$$m = W - 2(AC + R) \checkmark$$

$$= 193,74 - 2(17,32 + 10) \checkmark$$

$$= 193,74 - (34,64 + 20)$$

$$= 139,10 \text{ mm} \checkmark$$

$$OR$$

$$m = W - 2(AC) - 2(R) \checkmark$$

$$= 193,74 - 2(17,32) - 2(10) \checkmark$$

$$= 193,74 - 34,64 - 20$$

$$= 139,10 \text{ mm} \checkmark$$

(6)

Mechanical Technology: Fitting and Machining 13 NSC – Marking Guideline

DBE/November 2023

6.3 **Milling of spur gear:** 6.3.1 **Indexing:**

Indexing =
$$\frac{40}{N} = \frac{40}{89}$$

= $\frac{40}{A} = \frac{40}{90}$ \checkmark
= $\frac{4}{9} \times \frac{6}{6}$
= $\frac{24}{54}$ \checkmark
= Indexing: 0 full turns and 24 holes on a 54 – hole circle (3)

6.3.2 Change gears:

$$\frac{Dr}{Dn} = (A - n) \times \frac{40}{A}$$

$$\frac{Dr}{Dn} = (90 - 89) \times \frac{40}{90} \checkmark$$

$$= 1 \times \frac{40}{90}$$

$$= \frac{40}{90} \checkmark$$

$$= \frac{4}{9}$$

$$= \frac{4}{9}$$

$$= \frac{4}{9} \times \frac{8}{8} \checkmark$$

$$\frac{Dr}{Dn} = \frac{32}{72} \checkmark$$
(5)

Mechanical Technology: Fitting and Machining 14

NSC – Marking Guideline

DBE/November 2023

6.4 Balancing constraints/disadvantages:

- Requires specialised machinery. ✓
- Difficult to ascertain the exact point of unbalance. ✓
- Requires accurate removal or adding of material (weight) to the object. ✓
- Can lead to interference with parts of the machine when weights are added to parts. ✓

(Any 2 x 1) (2) [28]

Mechanical Technology: Fitting and Machining 15

NSC – Marking Guideline

DBE/November 2023

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 Instrument to measure indentation:

Microscope ✓ (1)

7.2 **Brinell hardness number:**

- Calculations ✓
- The use of a Brinell hardness table ✓

7.3 Function of moment tester:

To determine the reactions on either side of a simply loaded beam. ✓ (1)

7.4 Principal of tensile tester:

The tensile tester is a destructive ✓ tester that subjects a piece of material to an increasing axial load ✓ while measuring the corresponding elongation of the material. ✓

(3)

7.5 **Depth and screw-thread micrometer:**

The scale on the depth micrometer's barrel reads in the opposite direction compared to the screw thread micrometer. ✓

(1)

7.6 **Hardness assessment:**

- Resistance to penetration / Hardness tests ✓
- Sound test ✓
- Elastic hardness / Bending test / Tensile test ✓
- Resistance to abrasion / File test / Spark test / Machining test ✓

(Any 3×1) (3)

7.7 **Micrometer measurement:**

$$5,94 + 50 = 55,94 \text{ mm}$$
 (2) [13]

Mechanical Technology: Fitting and Machining 16 NSC – Marking Guideline DBE/November 2023

QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

8.1.1 **Horizontal component:**

$$\Sigma HC = 45\cos 0^{\circ} + 75\cos 30^{\circ} - 15\cos 75^{\circ} - 120\cos 270^{\circ}$$

$$\checkmark \qquad \checkmark \qquad \checkmark$$

$$\Sigma HC = 45 + 64,95 - 3,88 - 0$$

$$\Sigma HC = 106,07 \text{ N } \checkmark$$
(4)

8.1.2 **Vertical component:**

$$\sum VC = 45sin0^{\circ} + 75sin30^{\circ} + 15sin75^{\circ} - 120sin270^{\circ}$$

$$\sum VC = 0 + 37,5 + 14,49 - 120$$

$$\sum VC = -68,01 \,\mathsf{N} \,\checkmark \tag{4}$$

OR

Force	θ	8.1.1 $\sum HC/x = F\cos\theta$		8.1.2 $\sum VC/y = F \sin \theta$		
45N	0°	HC = 45cos0°	45N ✓	VC = 45sin0°	0N	
75N	30°	HC = 75cos30°	64,95N ✓	VC = 75sin30°	37,5N ✓	
15N	105°	HC = 15cos105°	-3,88N ✓	VC = 15sin105°	14,49N ✓	
120N	270°	HC = 120cos270°	0N	VC = 120sin270°	-120N ✓	
		Total	106,07N ✓		-68,01N ✓	(8)

8.1.3 **Resultant:**

$$R^{2} = VC^{2} + HC^{2}$$

$$R = \sqrt{(-68,01)^{2} + (106,07)^{2}} \checkmark$$

$$R = \sqrt{15876,21}$$

$$R = 126,00 \text{ N } \checkmark$$
(2)

Mechanical Technology: Fitting and Machining 17

NSC – Marking Guideline

DBE/November 2023

8.1.4 Angle and direction of resultant: Angle:

$$\tan \theta = \frac{\text{VC}}{\text{HC}}$$

$$\theta = \tan^{-1} \left(\frac{-68,01}{106,07} \right) \checkmark$$

$$\theta = \tan^{-1} (0,64)$$

$$\theta = 32,67^{\circ} \checkmark$$

Direction:

R=126,00N 32,67 $^{\circ}$ / 32 $^{\circ}$ 40' South of East \checkmark

OR

Angle:

$$\tan \theta = \frac{HC}{VC}$$

$$\theta = \tan^{-1} \left(\frac{106,07}{-68,01} \right) \checkmark$$

$$\theta = \tan^{-1} (1,559623585)$$

$$\theta = 57,20^{\circ} \checkmark$$

Direction:

R=126,00N 57,33° / 57°20' East of South \checkmark (4)

Mechanical Technology: Fitting and Machining 18 NSC – Marking Guideline DBE/November 2023

8.2 Reaction in supports A and B:

Reaction in support A: Take moments about B:

$$\sum_{i}$$
LHM = \sum_{i} RHM

$$(55 \times 7) = (A \times 7) + (160 \times 1,5)$$

$$385 = 7A + 240$$

$$A = \frac{145}{7} \checkmark$$

$$A = 20,71 \text{ N}$$

Reaction in support B: Take moments about A:

$$\sum$$
LHM = \sum RHM

$$(B \times 7) = (55 \times 0) + (160 \times 8,5)$$

$$7B = 0 + 1360$$

$$B = \frac{1360}{7} \checkmark$$

$$B = 194,29 \text{ N}$$

(9)

Mechanical Technology: Fitting and Machining 19

NSC – Marking Guideline

DBE/November 2023

8.3 Stress and strain:

8.3.1 **Maximum load:**

$$A = \frac{\pi D^{2}}{4}$$

$$= \frac{\pi 0,02^{2}}{4} \checkmark$$

$$= 3,14159265 \times 10^{-4} \text{m}^{2} \checkmark \text{OR} \quad 3,14 \times 10^{-4} \text{m}^{2} \checkmark$$

$$\sigma = \frac{\mathsf{F}}{\mathsf{A}}$$

$$F = A \times \sigma \checkmark$$

F =
$$3,14159265 \times 10^{-4} \times 640 \times 10^{6}$$

F = $201061,93 \text{ N}$
F = $201,06 \text{ kN} \checkmark$ **OR** $200,96 \text{ kN} \checkmark$ (6)

8.3.2 **Safe working stress:**

$$SF = \frac{MS}{SS}$$

$$SS = \frac{MS}{SF} \checkmark$$

$$SS = \frac{640 \times 10^{6} \checkmark}{3} \checkmark$$

$$SS = 2133333333333 Pa$$

$$SS = 213,33 MPa \checkmark$$
(4)
[33]

Mechanical Technology: Fitting and Machining 20
NSC – Marking Guideline

DBE/November 2023

QUESTION 9: MAINTENANCE (SPECIFIC)

9.1 **Preventative maintenance:**

Subgroups of preventative maintenance:

- Planned or scheduled maintenance ✓
- Conditional-based maintenance √

9.2 Advantages of belt drives over gear drives:

- Produce less noise than gear drives. ✓
- Produce less vibration than gear drives. ✓
- More cost effective.
- Belt drives will slip under a sudden load /over load to protect the drive. ✓
- Do not need lubrication like gear drives.
- Belt drives do not require parallel shafts. ✓
- Belts can be used over long distances. ✓

(Any 3×1) (3)

(2)

9.3 **Belt drives:**

- V-pulley ✓
- Wedge pulley ✓
- Flat pulley ✓
- Round belt ✓
- Timing/Toothed belt ✓
- Multi-groove belt ✓

(Any 3×1) (3)

9.4 Non-stick material:

Teflon ✓ (1)

9.5 **Uses**:

Polyvinyl chloride (PVC):

9.5.1

- Trays for food and toiletries ✓
- Clear bottles ✓
- Blister packaging ✓
- Drain and sewerage pipes ✓
- Electrical pipes ✓
- Drip bags ✓
- Cooking bottles ✓
- Vinegar bottles ✓
- Credit cards ✓
- Shoe soles ✓
- Floor tiles ✓
- Wallpaper ✓
- Outdoor furniture ✓
- Disposable cutlery ✓

(Any 2 x 1) (2)

SA EXAM PAPERS | This past paper was downloaded from saexampapers.co.za Mechanical Technology: Fitting and Machining DBE/November 2023 NSC - Marking Guideline 9.5.2 **Bakelite:** Electrical insulators ✓ Kitchenware ✓ Jewellery ✓ Toys ✓ Distributor rotors ✓ Disc brake cylinders ✓ Sauce pan handles ✓ Electrical switches ✓ Electrical parts ✓ Aircraft components ✓ Bearings ✓ Clutch linings ✓ Brake linings ✓ Laminated materials ✓ Computer motherboards ✓ (Any 2 x 1) (2) 9.5.3 Fibre Glass Surface covering ✓ Woven cloth ✓ Pillow stuffing ✓ Reinforced plastics ✓ Boats ✓ Motor vehicle bodies ✓ Roof sheeting ✓ Petrol tanks ✓ Swimming pools ✓ Furniture ✓ Fruit and salad bowls ✓ Ornaments ✓ Sporting equipment ✓ Jigs forms ✓ (Any 2 x 1) (2)

9.6 Thermo-hardened or thermoplastic:

9.6.1 **Carbon fibre:**

Thermo-hardened / Thermosetting ✓ (1)

9.6.2 **Nylon:**

Thermoplastic ✓ (1)

9.6.3 **Bakelite:**

Thermo-hardened / Thermosetting ✓ (1) [18]

DBE/November 2023

QUESTION 10: JOINING METHODS (SPECIFIC)

10. 1 Square screw thread:

10.2 **Square Thread:**

10.2.1 Pitch diameter:

Pitch =
$$\frac{\text{Lead}}{\text{Number of starts}}$$

= $\frac{25}{2}$ \checkmark
= 12,50 mm \checkmark

PD = OD -
$$\frac{P}{2}$$

= 70 - $\frac{12,50}{2}$ \(\neq \text{PD} = 63,75 \text{ mm } \neq \text{(4)}

10.2.2 **Helix angle of the thread:**

$$Tan\theta = \frac{Lead}{\pi \times D_p}$$

$$Tan\theta = \frac{25 \checkmark}{\pi \times 63.75} \checkmark$$

$$\theta = tan^{-1}(0.124827406) \checkmark$$

$$= 7.12^{\circ} \text{ OR } 7^{\circ}7' \checkmark \tag{4}$$

10.2.3 **Leading angle:**

Leading angle =
$$90^{\circ}$$
_ (Helix angle + Clearance angle)
= 90° _ (7,12° + 3°) \checkmark
= $79,88^{\circ}$ **OR** $79^{\circ}53^{\circ}$ \checkmark (2)

Mechanical Technology: Fitting and Machining 23

NSC – Marking Guideline

DBE/November 2023

10.2.4 **Following angle:**

Following angle =
$$90^{\circ}$$
 + (Helix angle – Clearance angle)
= 90° + $(7,12^{\circ}-3^{\circ})$ \(= $94,12^{\circ}$ **OR** $94^{\circ}7^{\circ}$ \(\text{(2)}

10.3 **ISO V-screw thread:**

- A. Helix angle ✓
- B. Pitch / Lead ✓
- C. Root ✓

(3) **[18]**

Mechanical Technology: Fitting and Machining 24 NSC – Marking Guideline DBE/November 2023

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Hydraulic systems:

11.1.1 **Area of Ram:**

$$A(Ram) = \frac{\pi D^2}{4}$$

$$A = \frac{\pi (0,110)^2}{4} \checkmark$$

$$A = 0.0095 \text{ m}^2 \checkmark \text{ OR} \quad 9.50 \times 10^{-3} \text{ m}^2 \checkmark$$
 (2)

11.1.2 Applied force on plunger:

$$p = \frac{F}{A}$$

$$\frac{f}{a} = \frac{F}{A}$$

$$f = \frac{F \times a}{A}$$

$$f = \frac{350 \times 0,005}{0,0095} \quad \checkmark$$

$$f = 184,21 \text{ N } \checkmark$$
 (3)

Mechanical Technology: Fitting and Machining 25 NSC – Marking Guideline DBE/November 2023

11.1.3 **Displacement h:**

$$V_{Plunger} = V_{Ram}$$

$$a \times h = A \times H$$

$$h = \frac{A \times H}{a}$$

$$h = \frac{0,0095 \times 0,025}{0,005} \quad \checkmark$$

h = 0.0475 m

$$h = 47.5 \text{ mm} \checkmark$$
 (3)

11.2 Pressure gauge:

- To adjust pressure control valves. ✓
- Determining the pressure being exerted. ✓
- For safety. ✓
- Indicates if leakages are present in the system. ✓

(Any 2 x 1) (2)

11.3 Advantages of pneumatics:

- Pneumatic tools are very environmentally friendly. / Clean operation ✓
- Last longer. ✓
- More robust. ✓
- More compact. ✓
- Easily maintained. ✓
- Easily installed.
- Cost effective. ✓
- Safe to use. ✓
- High power-to-weight ratio. ✓
- Simple control. ✓
- Quick response. ✓
- Versatile. ✓

(Any 1 x 1) (1)

Mechanical Technology: Fitting and Machining 26 NSC – Marking Guideline DBE/November 2023

11.4 Belt drive:

11.4.1 The rotational frequency in r/sec:

$$N_{DR} \times D_{DR} = N_{DN} \times D_{DN}$$

$$N_{DN} = \frac{N_{DR} \times D_{DR}}{D_{DN}} \quad \checkmark$$

$$N_{DN} = \frac{25 \times 75}{350} \checkmark$$

$$N_{DN} = 5,36 \text{ r/sec} \checkmark$$
 (4)

11.4.2 **Belt speed:**

Belt Speed(V) =
$$\pi D_{DR} \times N_{DR}$$
 Belt Speed(V) = $\pi D_{DR} \times N_{DR}$
= $\pi \times 0.075 \times 25$ OR = $\pi \times 0.350 \times 5.36$ \checkmark
= 5.89 m/s \checkmark = 5.89 m/s \checkmark (2)

11.5 **V-Belt:**

11.6 **Gear drives:**

11.6.1 **The rotational frequency:**

$$\frac{N_{input}}{N_{output}} = \frac{Product \text{ of teeth on driven gears}}{Product \text{ of teeth on driver gears}}$$

$$\frac{N_A}{N_D} = \frac{T_B \times T_D}{T_A \times T_C}$$

$$\frac{95}{N_D} = \frac{55 \times 50}{30 \times 25} \checkmark$$

$$N_D = \frac{30 \times 25 \times 95}{55 \times 50} \checkmark$$

$$N_D = \frac{71250}{2750}$$

$$N_D = 25,91 \text{ r/min} \checkmark$$

(4)

Mechanical Technology: Fitting and Machining 27 NSC – Marking Guideline DBE/November 2023

11.6.2 **Power transmitted:**

$$Power(P) = \frac{2 \pi N T}{60}$$

$$P = \frac{2 \times \pi \times 95 \times 120}{60} \checkmark$$

$$P = 1193,81 \checkmark Watt(W) \checkmark OR$$

$$P = 1,19 \checkmark Kilowatt(kW) \checkmark$$

11.7 **Length of spanner:**

Torque(T) Force Radius

Radius =
$$\frac{T}{F}$$
 \checkmark

Radius =
$$\frac{135}{300}$$
 \checkmark

Radius = $0.45 \, \text{m} \checkmark$

Radius = 450 mm ✓

(3) **[28]**

(3)

TOTAL: 200

