

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES

CONTROL TEST MARKING GUIDELINES

13 MARCH 2024

MARKS: 100

THIS MARKING GUIDELINE CONSISTS OF 11 PAGES

2 NSC – MARKING GUIDELINES LIMPOPO/MARCH 2024

QUESTION 1

1.1
$$C \checkmark \checkmark$$

1.2
$$\mathbf{B} \checkmark \checkmark$$

1.3
$$\mathbf{B} \checkmark \checkmark$$

1.4
$$C \checkmark \checkmark$$

1.5
$$\mathbf{p} \checkmark \checkmark$$

$$1.6 \quad \mathbf{B} \checkmark \checkmark \tag{2}$$

$$1.7 \quad A \checkmark \checkmark \tag{2}$$

$$1.8 \quad \mathbf{B} \checkmark \checkmark \tag{2}$$

$$1.9 \quad \mathbf{D} \checkmark \checkmark \tag{2}$$

$$1.10 \quad \mathbf{B} \checkmark \checkmark \tag{2}$$

[20]

QUESTION 2

2.1 A body will remain in its state of rest or motion at a constant velocity unless a (2) non-zero resultant/net force acts on it. 🗸 🗸

	Acceptable labels		
F	Fapplied/Force applied/FA	✓	
Fg	w/Fw/weight/mg/gravitational force	✓	
N	Normal (force)/Fnormal/FN	✓	
f	Friction/F _f /f _k	✓	
T	F _T /Tension	✓	

Notes:

• Mark awarded for label and arrow.

SA EXAM PAPERS (5)

3 NSC – MARKING GUIDELINES

Do not penalise for length of arrow since drawing is not to scale.

LIMPOPO/MARCH 2024

- Any other additional force(s): 4/5
- If force(s) does/do not make contact with body: 4/5

2.3 **OPTION 1**

For Q:

$$egin{aligned} \mathbf{F}_{net} &= ma \ & \mathbf{F}_{net} &= \mathbf{0} \ & \mathbf{Any one} \ \checkmark \end{aligned}$$

$$T - f_k = 0$$

$$T-1\checkmark=0\checkmark$$

T = 1 N

For P:

 $\mathbf{F}_{net} = ma$

 $\mathbf{F}_{net} = \mathbf{0}$

$$\mathbf{F}_{x}-T-f_{k}=\mathbf{0}$$

 $F \cos 30^{\circ} \sqrt{-1-2, 5=0} \sqrt{}$

 $\therefore F = 4,04 \text{ N} \checkmark$

OPTION 2: SYSTEM APPROACH

 $\mathbf{F}_{net} = ma$

$$\mathbf{F}_{net} = \mathbf{0}$$
 Any one \checkmark

$$\mathbf{F}_{x} - f_{kQ} - f_{kP} = \mathbf{0}$$

 $F \cos 30^{\circ} - 1 - 2, 5 = 0 \checkmark$

$$\therefore$$
 F = 4.04 N \checkmark

NB: Maximum marks: 3/6

(6)

- 2.4 LEFT ✓
 - The only force acting on the object is frictional force. ✓
 - According to Newton's Second Law, the body will accelerate in the direction of the (net) force. ✓

2.5 Increases ✓

(1)

(3)

[17]

4

LIMPOPO/MARCH 2024

NSC – MARKING GUIDELINES

QUESTION 3

3.1.1 The collision during which the <u>total kinetic energy</u> ✓ of the objects in the system <u>is conserved/stays the same</u>. ✓ (2)

3.1.2
$$\sum_{i} K_{i} = \sum_{i} K_{f}$$

$$\frac{1}{2} m_{x} v_{xi}^{2} + \frac{1}{2} m_{y} v_{yi}^{2} = \frac{1}{2} m_{x} v_{xf}^{2} + \frac{1}{2} m_{y} v_{yf}^{2}$$

$$\frac{1}{2} (1,56)(3)^{2} + \frac{1}{2} (m)(0)^{2} \checkmark = \frac{1}{2} (1,56)(0)^{2} + \frac{1}{2} (m)(2)^{2} \checkmark$$

$$m = 3,51 \, kg \checkmark$$

 $3.2.1 ext{ Yes} \checkmark ext{ } ext{ }$

- 3.2.2 No negative marking from QUESTION 3.2.1
 - Crumple zones increase the collision time/contact time (Δt)
 - According to $F_{net} = \frac{\Delta p}{\Delta t}$, for constant Δp , $F_{net} \propto \frac{1}{\Delta t} \checkmark$
 - If Δt increases then F_{net} decreases, hence less damage \checkmark (3)
- 3.2.3 The total linear momentum of an isolated system remains constant (is

$$\underline{\text{conserved}} \checkmark \checkmark (2 \text{ or } 0) \tag{2}$$

3.2.4 **OPTION 1: EAST AS POSITIVE** (4)

$$\sum p_{i} = \sum p_{f} \checkmark$$

$$m_{A}v_{Ai} + m_{B}v_{Bi} = m_{A}v_{Af} + m_{B}v_{Bf}$$

$$(1350)(20) + (1500)(-10)\checkmark = (1350)(-5) + (1500)v_{Bf}\checkmark$$

$$v_{Bf} = -12,50 \ m \cdot s^{-1}$$

$$= 12,50 \ m \cdot s^{-1} \text{ eastwards} \checkmark$$

OPTION 2: WEST AS POSITIVE

$$\sum p_{i} = \sum p_{f} \checkmark$$

$$m_{A}v_{Ai} + m_{B}v_{Bi} = m_{A}v_{Af} + m_{B}v_{Bf}$$

$$(1350)(-20) + (1500)(10)\checkmark = (1350)(5) + (1500)v_{Bf}\checkmark$$

$$v_{Bf} = -12,50 \text{ m} \cdot \text{s}^{-1} \checkmark \text{ eastwards}$$

$$v_{Bf} = 12,50 \text{ m} \cdot \text{s}^{-1} \checkmark \text{ eastwards}$$

[16]

NSC – MARKING GUIDELINES

LIMPOPO/MARCH 2024

(4)

QUESTION 4

4.1 An object which has been given an initial velocity and on which the only force (2) acting is the gravitational force.

4.2 **OPTION 1**

Upward positive

$$v_f = v_i + a\Delta t \checkmark$$

$$-24, 5 = 24, 5 \checkmark + (-9, 8)\Delta t \checkmark$$

$$\Delta t = 5 s \checkmark$$

OPTION 2

Downward positive

$$v_f = v_i + a\Delta t \checkmark$$

$$24, 5 = -24, 5\checkmark + (9, 8)\Delta t\checkmark$$

$$\Delta t = 5 s\checkmark$$

OPTION 3

Upward positive

$$v_f = v_i + a\Delta t \checkmark$$

$$0 = 24, 5 \checkmark + (-9, 8)\Delta t \checkmark$$

$$\Delta t = 2.5 s$$

Total time =
$$2.5 + 2.5$$

= $5 \text{ s} \checkmark$

OPTION 4

Downward positive

$$v_f = v_i + a\Delta t$$

$$0 = -24, 5 \checkmark + (9, 8)\Delta t$$

$$\Delta t = 2, 5 s$$
al time = 2.5 + 2.5

Total time =
$$2.5 + 2.5$$

= $5 \text{ s} \checkmark$

OPTION 5

Upward positive

$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$0 \checkmark = 24, 5 \Delta t + \frac{1}{2} (-9, 8) \Delta t^2 \checkmark$$

$$\Delta t = 5 s \checkmark$$

OPTION 6

Down positive

$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$0 \checkmark = 24, 5 \Delta t + \frac{1}{2} (-9, 8) \Delta t^2 \checkmark$$

$$\Delta t = 5 s \checkmark$$

$$\Delta t = 5 s \checkmark$$

$$\Delta t = 5 s \checkmark$$

POSITIVE MARKING FROM QUESTION 4.3 4.3

OPTION 1

Upward positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$\Delta y_{last} = \Delta y_{(5)} - \Delta y_{(4)}$$

$$= \left\{ 24, 5(5) + \frac{1}{2} (-9, 8)(5)^2 \right\} \checkmark - \left\{ 24, 5(4) + \frac{1}{2} (-9, 8)(4)^2 \right\} \checkmark$$

$$\Delta y_{last} = -19, 6 \text{ m}$$

$$\text{Distance} = |\Delta y| = 19, 6 \text{ m} \checkmark$$

(4)

(4)

NSC – MARKING GUIDELINES

LIMPOPO/MARCH 2024

OPTION 2

Downward positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$\Delta y_{last} = \Delta y_{(5)} - \Delta y_{(4)}$$

$$= \left\{ -24.5(5) + \frac{1}{2} (9,8)(5)^2 \right\} \checkmark - \left\{ -24.5(4) + \frac{1}{2} (9.8)(4)^2 \right\} \checkmark$$

$$\Delta y_{last} = 19,6 \text{ m}$$

$$\text{Distance} = |\Delta y| = 19,6 \text{ m} \checkmark$$

OPTION 3

Upward positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= (24, 5(4) \checkmark + \frac{1}{2} (-9, 8)(4)^2 \checkmark$$

$$= 19, 6 m$$
Distance = $|\Delta y| = 19, 6 m \checkmark$

OPTION 4

Downward positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= (-24, 5(4) \checkmark + \frac{1}{2} (9, 8)(4)^2 \checkmark$$

$$= 19, 6 m$$

Distance =
$$|\Delta y| = 19, 6 m \checkmark$$

OPTION 5

Upward positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$\Delta y = 24.5(1) \checkmark + \frac{1}{2}(-9.8)(1)^2 \checkmark$$

= 19,6 m

Distance = $|\Delta y|$ = 19, 6 m

LIMPOPO/MARCH 2024

OPTION 6

Downward positive

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$\Delta y = -24, 5(1) \checkmark + \frac{1}{2} (9, 8)(1)^2 \checkmark$$

$$= -19, 6 m$$
Distance = $|\Delta y| = 19, 6 m \checkmark$

OPTION 7

Upward positive

$$v_f = v_i + g\Delta t$$

$$= 24, 5 + (-9, 8)(4)$$

$$= -14, 7 \, m \cdot s^{-1} \checkmark$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a\Delta t^2 \checkmark$$

$$= -14, 7(1) + \frac{1}{2} (-9, 8)(1)^2 \checkmark$$

$$= -19, 6 \, m \checkmark$$

OPTION 8

Downward positive

$$= -24, 5 + 9, 8(4)$$

$$= 14, 7 \, m \cdot s^{-1} \checkmark$$

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$$

$$= 14, 7(1) + \frac{1}{2} (9, 8)(1)^2 \checkmark$$

$$= 19, 6 \, m \checkmark$$

 $v_f = v_i + g\Delta t$

NSC – MARKING GUIDELINES

LIMPOPO/MARCH 2024

(3)

(3)

4.4.1 **POSITIVE MARKING FROM QUESTION 4.2**

OPTION 1 $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ $-56 = v_i(4) + \frac{1}{2}(-9,8)(4)^2 \checkmark \qquad 56 = v_i(4) + \frac{1}{2}(9,8)(4)^2 \checkmark$ $v_i = -5, 6 m \cdot s^{-1}$ $v_i = 5,6 m \cdot s^{-1} \checkmark$ $v_i = 5.6 \ m \cdot s^{-1} \checkmark$

POSITIVE MARKING FROM QUESTION 4.4.1 4.4.2

OPTION 1 OPTION 2 Upward positive Downward positive $v_f = v_i + a\Delta t \checkmark$ $v_f = v_i + a\Delta t \checkmark$ = 5,6 + (-9,8)(4)=-5,6+(9,8)(4) $= -33, 6 m \cdot s^{-1}$ $= 33,6 m \cdot s^{-1} \checkmark$ $= 33.6 m \cdot s^{-1} \checkmark$

4.5 **POSITIVE MARKING FROM QUESTION 4.2 AND 4.3**

[20]

Please turn over.

LIMPOPO/MARCH 2024

NSC – MARKING GUIDELINES

QUESTION 5

- 5.1.1 Ketone (s) ✓ (1)
- 5.1.2 Pentanal (2)

ACCEPT:

- 2,2-dimethylpropanal
- 2-methylbutanal
- 3-methylbutanal

Marking criteria

- Correct functional group, i.e. al ✓
- Whole name correct ✓
- 5.2.1 5-bromo-2,3-dimethylhexane

Marking criteria

- Correct stem i.e. hexane ✓
- All substituents (bromo and dimethyl) correctly identified ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas. \checkmark
- (3)

(2)

5.2.2

Marking criteria

- Whole structure correct. $\frac{2}{2}$
- Only functional group correct $\frac{1}{2}$ If:
- Molecular formula 0/2
 - Condensed structural formula ½
- 5.3.1 The C atom bonded to the hydroxyl group is bonded to only one other (2) C-atom. $\checkmark\checkmark$ (2 or 0)

The hydroxyl group/-OH is bonded to a C atom which is bonded to two hydrogen atoms. $\checkmark\checkmark$ (2 or 0)

OR

The hydroxyl group/functional group/-OH is bonded to a primary C atom/ the first C atom. \checkmark (2 or 0)

is bonded to only one other C-atom. $\checkmark\checkmark$ The functional group (2 or 0)

5.3.2 (1) Esterification/condensation

5.3.3 (1) Butanoic acid 🗸

[12]

PHYSICAL SCIENCE GR. 12/TERM 1 10 LIMPOPO/MARCH 2024 **NSC – MARKING GUIDELINES QUESTION 6** 6.1.1 Liquid ✓ (1) 6.1.2 Solid ✓ (1) 6.2.1 (2) Marking criteria If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark. The temperature at which the vapour pressure equals the atmospheric (external) pressure. ✓✓ 6.2.2 Lower than ✓ **(1)** 6.2.3 Marking criteria (3) Compare structures

Compare the strength of intermolecular forces \checkmark

2,2-dimethylbutane

Structure:

• <u>More branched/more compact/more spherical/smaller surface area</u> (over which intermolecular forces act). ✓

Compare the energy required to overcome intermolecular forces

Intermolecular forces:

• <u>Weaker/less intermolecular forces/Van der Waals forces/London forces/Dispersion forces.</u> ✓

Energy:

• <u>Less energy needed to overcome or break intermolecular forces</u>/Van der Waals forces. ✓

OR

Hexane

Structure:

• <u>Longer chain length/unbranched/less compact/less spherical/larger</u> surface area (over which intermolecular forces act) ✓

Intermolecular forces

• <u>Stronger/more intermolecular forces/</u>Van der Waals force/London force/dispersion forces. ✓

Energy

• More energy needed to overcome or break intermolecular forces/Van der Waals forces. ✓

[80]

11

LIMPOPO/MARCH 2024

NSC – MARKING GUIDELINES

QUESTION 7

7.2.1 Water/H₂O
$$\checkmark$$
 (1)

7.2.2 (Dilute) sulphuric acid/
$$H_2SO_4$$
 OR (Dilute) phosphoric acid/ H_3PO_4 \checkmark (1)

7.3
$$H$$
 $C = C$
 $+ H - Br$
 $+ H - H - H$
 $+ H$

TOTAL: 100 MARKS

[07]