

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za



Controlled Test (Term 1) - 2024



# **Gauteng Department of Education Johannesburg North District (D10)**

**GRADE 12** 

PHYSICAL SCIENCES
CONTROLLED TEST 1
15 MARCH 2024

**MARKING GUIDELINES** 

**MARKS: 100** 

TIME: 2 Hours



Controlled Test (Term 1) - 2024

2

#### **SECTION A: PHYSICS**

### **QUESTION 1**

1.1 C ✓✓ (2)

1.2 B ✓✓ (2)

1.3 D ✓✓
[6]

#### **QUESTION 2**

2.1 When a <u>resultant/net force</u> acts on an object, the object will accelerate in the direction of the force at an <u>acceleration directly proportional to the force</u> and <u>inversely proportional to the mass</u> of the object.

OR

The <u>resultant/net force</u> acting on an object is <u>equal to the rate of change</u> <u>of momentum</u> of the object (in the direction of the resultant/net force.) ✓✓

(2)

(4)

2.2



# **Notes**

- Mark is awarded for label and arrow.
- Do not penalise for length of arrows.
- Deduct 1 mark for any additional force.
- If all forces are correctly drawn and labelled, but no arrows, deduct 1 mark.
- If force(s) do not make contact with body max ¾
- ACCEPT: If T is not shown but T|| and T₁ are shown, give 1 mark for both (However explain to learners that components will NO LONGER be accepted on free-body diagrams)



Controlled Test (Term 1) - 2024

(1)

3

2.3.1 ANY OF: ✓

The blocks/system are accelerating.

OR

The acceleration is changing / not zero / a  $\neq$  0 (m·s<sup>-2</sup>) / a = 1,32 m.s<sup>-2</sup>

OR

Velocity is /increasing/changing/not constant

OR

F<sub>net</sub> is not equal to zero (1)

2.3.2  $F_{net} = ma$ mg -T= ma  $(2)(9,8) - T = 2(1,32) \checkmark$ 

> T = 16,96 N(3)

2.3.3 **POSITIVE MARKING FROM 2.3.2** 

> F<sub>net</sub> = ma  $T_x - f_k = ma$  $T\cos 15^{\circ} - f_k = ma$

 $(16,96)\cos 15^{\circ} \checkmark - f_k = (8)(1,32) \checkmark$ 

(4)  $f_k = 5.82 \text{ N}$  to the left  $\checkmark$ 

2.4 Any ONE ✓

- Normal force changes/decreases
- The angle (between string and horizontal) changes/increases.
- The vertical component of the tension changes/increases

2.5 Yes ✓

> The <u>frictional force (coefficient of friction)</u>/  $\mu_k$  depends on the nature of the surfaces in contact. ✓

> > OR

The µ<sub>k</sub> changes ✓ (2)[17]



Controlled Test (Term 1) - 2024

4

#### **QUESTION 3**

3.1 The total linear momentum of an isolated system remains constant ✓✓ (is conserved) in both magnitude and direction. (2 or zero)

Accept closed system however explain to learners a closed system will no longer be accepted (2)

# 3.2 **OPTION 1**

SOUTH AS POSITIVE

No. of passengers =  $3 \cdot 120 - 2000 = 1 \cdot 120 \div 70 = 16$  passengers Therefore 16 - 12 = 4 passengers in excess  $\checkmark$ 

OR

$$3\ 120 - 2000 - 12(70) = 280 \div 70 = 4$$
 passengers in excess (5)

#### **OPTION 2**

SOUTH AS POSITIVE

Let number of passengers = x

$$\begin{array}{c} \Sigma p_i = \Sigma p_f \\ m_1 v_{1i} + m_2 v_{2i} = (m_1 + m_2) v_f \\ \end{array}$$
 1 mark for any 
$$(2000 + 70x)(+20) + (1\ 248)(-15) \checkmark = [(2000 + 70x) + 1\ 248](10) \checkmark \\ 40\ 000 + 1400x - 18\ 720 = 32\ 480 + 700x \\ 700x = 11\ 200 \\ x = 16 \checkmark$$
 Accept solution with North as Positive

Therefore 16 - 12 = 4 passengers in excess  $\checkmark$ 

# 3.3 **POSITIVE MARKING FROM 3.2**

Mass of taxi = 3 120 kg

$$E_{ki} = \frac{1}{2} \text{mv}^2$$

$$E_{ki} = \frac{1}{2} \text{m}_1 \text{v}_{1i}^2 + \frac{1}{2} \text{m}_2 \text{v}_{2i}^2$$

$$= \frac{1}{2} (3 \ 120)(20)^2 + \frac{1}{2} (1 \ 248)(-15)^2 \checkmark$$

$$= 624 \ 000 + 140 \ 400$$

$$= 764 \ 400 \ J$$



Controlled Test (Term 1) - 2024

5

 $E_{kf} = \frac{1}{2}(m_1 + m_2)v_f^2$   $= \frac{1}{2}(3 \ 120 + 1 \ 248)(10)^2 \checkmark$   $= \frac{1}{2}(4 \ 368)(10)^2$   $= 218 \ 400 \ J$ 

 $E_{ki} \neq E_{kf}$  Therefore the collision is inelastic

(4)

- 3.4 During a collision, the crumple zone/ airbag:
  - The impulse/change in momentum/Δp remains constant
  - The contact time/Δt increases
  - The net force/force/F<sub>net</sub> decreases

(3) **[14]** 



6

# **QUESTION 4**

4.1 9,8 m.s<sup>-2</sup> downwards ✓ (No marks if -9,8 or no direction included) (1)

4.2.1

# OPTION 1 $v_f^2 = v_i^2 + 2a\Delta y$ ✓ $v_f^2 = (0)^2 + 2(-9,8)(-19,6)$ ✓ $v_f = -19,6 \text{ m} \cdot \text{s}^{-1}$ $v_f = 19,6 \text{ m} \cdot \text{s}^{-1}$ downwards ✓

Accept if downwards taken as positive

OPTION 2

$$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2$$
  
-19,6 = (0)<sup>2</sup> +  $\frac{1}{2} (-9,8) \Delta t^2$   
 $\Delta t = 2$ 

$$v_f = v_i + a\Delta t \checkmark$$
  
= 0 + (-9,8)(2)  $\checkmark$   
 $v_f = -19,6 \text{ m} \cdot \text{s}^{-1}$   
 $\underline{v_f} = 19,6 \text{ m} \cdot \text{s}^{-1} \text{ downwards} \checkmark$ 

4.2.2 **OPTION 1** 

# For A:

$$\Delta x_A = v_i \Delta t + \frac{1}{2} a \Delta t^2$$
  
-19,6= 0 +  $\frac{1}{2}(-9,8) \Delta t^2$   
 $\Delta t = 2s$ 

$$\Delta t_A = \Delta t_B$$
 $\Delta x_B = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ 
 $-29.6 \checkmark = v_i(2) + \frac{1}{2} (-9.8)(2)^2 \checkmark$ 
 $v_i = -5 \text{ m} \cdot \text{s}^{-1}$ 
 $v_i = \frac{5 \text{ m} \cdot \text{s}^{-1} \text{ downwards}}{2} \checkmark$ 

# **OPTION 2**

# For A:

$$\frac{\nabla}{\nabla_{fA} = \nabla_{i}} + a\Delta t$$

$$-19,6 = 0 + (-9,8)\Delta t \checkmark$$

$$\Delta t = 2s$$

$$\Delta t_A = \Delta t_B$$
 $\Delta x_B = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$ 
 $-29.6 \checkmark = v_i(2) + \frac{1}{2} (-9.8)(2)^2 \checkmark$ 
 $v_i = -5 \text{ m} \cdot \text{s}^{-1}$ 
 $v_i = \frac{5 \text{ m} \cdot \text{s}^{-1} \text{ downwards}}{2} \checkmark$ 

4.3 **POSITIVE MARKING FROM 4.2.2** 



| Marking criteria                                               | Marks    |
|----------------------------------------------------------------|----------|
| A starts at 0 m·s <sup>-1</sup> with negative gradient         | <b>✓</b> |
| Graphs for <b>A</b> and <b>B</b> stop at 2s                    | <b>√</b> |
| <b>B</b> starts at -5 m·s <sup>-1</sup> with negative gradient | ✓        |
| Lines parallel to each other                                   | <b>√</b> |



(3)

(5)

Controlled Test (Term 1) - 2024

7

# **SECTION B: CHEMISTRY**

# **QUESTION 1**

1.1 D ✓✓ (2)

1.2 C ✓✓ (2)

1.3 C ✓✓ (2) [6]

# **QUESTION 2**

2.1 Unsaturated ✓

Any ONE: ✓

- Compound C has a <u>triple/multiple bond between C atoms</u>
- Compound C <u>does NOT contain the maximum number of H atoms bonded to C atoms</u>.
- Compound C <u>is an alkyne</u> (2)

2.3.1

Marking criteria:

- Whole structure correct 2/2
- Only functional group correct Max: 1/2
- If condensed or semi-structural formula used Max: 1/2 (2)
- 2.3.2 Hydroxyl (group) ✓ (Do NOT accept Alcohol) (1)
- 2.3.3 Butan-2-ol ✓ (Do NOT accept Butanol / Butan-1-ol) (1)

2.3.4



(2)

2.4.1 Haloalkane / Alkyl halide <

(1)



Controlled Test (Term 1) - 2024

(4)

8

2.4.2 3,5-√dibromo√octane √

Marking criteria:

- Octane (1 mark)
- Dibromo (1 mark)
- Substituents (dibromo) correctly numbered, hyphens, commas correctly used. (1 mark) (3)
- 2.5  $2\underline{C_4H_{10}}\checkmark + 13O_2 \rightarrow 8\underline{CO_2} + 10\underline{H_2O}$  both products  $\checkmark$  correct balancing  $\checkmark$  (3) [19]

#### **QUESTION 3**

- 3.1 150 kPa√ (1)
- 3.2.1 The <u>temperature</u> ✓ at which the <u>vapour pressure</u> of a liquid is <u>equal</u> to the <u>atmospheric (external) pressure</u> ✓ (2)
- 3.2.2 55°C ✓ (1)
- $3.3.1 \quad Z \checkmark$
- 3.3.2 <u>Carboxylic acids</u> have, in addition to London forces and dipole-dipole forces, <u>two sites for hydrogen bonding</u> between molecules. ✓

<u>Alcohols</u> have, in addition to London forces and dipole-dipole forces, <u>one</u> <u>site for hydrogen bonding</u> between molecules. ✓

<u>Ketones</u> have, in addition to London forces, <u>dipole-dipole</u> forces between molecules. ✓

Intermolecular forces in carboxylic acids is the strongest. 

Most energy needed to overcome intermolecular forces in carboxylic acid hence the lowest vapour pressure.

3.3.4 Propanone√ (Accept: propan-2-one) (1) [10]



Controlled Test (Term 1) - 2024

9

# **QUESTION 4**

4.1 Secondary ✓ The C atom bonded to the <u>OH group</u> is bonded to TWO other C atoms ✓ (2) 4.2.1 Elimination of water /H<sub>2</sub>O ✓ (1) 4.2.2 Sulphuric acid or Phosphoric acid ✓ 4.3.1 Hydrogenation√ (1) 4.3.2 Dehydrohalogenation / dehydrobromination ✓ (1) (1) 4.4.1 Substitution (hydrolysis)✓ 4.4.2 Dilute base / Dilute sodium hydroxide (NaOH) ✓ Moderate temperature/(mild) heat ✓ (2) (2) 4.4.3 2√-bromobutane ✓ 4.5 (3)Accept H<sub>2</sub> (instead of H-H) 4.6 butane√ (1) [15]

TOTAL SECTION B: [50 MARKS]
[TOTAL = 100 MARKS]



# Controlled Test (Term 1) - 2024

# COGNITIVE LEVELS FOR PHYSICAL SCIENCE GRADE 12 – CONTROLLED TEST 2024

|                    |        | COGNITIVE LEVELS |                  |                         |                         |  |  |
|--------------------|--------|------------------|------------------|-------------------------|-------------------------|--|--|
| QUESTION           |        | 1                | 2                | 3                       | 4                       |  |  |
|                    | MARKS  | Recall           | Comprehension    | Analysis<br>Application | Evaluation<br>Synthesis |  |  |
|                    |        | (15 %)           | (40 %)           | (35 %)                  | (10 %)                  |  |  |
| SECTION A: PHYSICS |        |                  |                  |                         |                         |  |  |
| 1.1                | 2      |                  | 2                |                         |                         |  |  |
| 1.2                | 2      |                  |                  | 2                       |                         |  |  |
| 1.3                | 2      |                  |                  | 2                       |                         |  |  |
| 2.1                | 2      | 2                |                  |                         |                         |  |  |
| 2.2                | 4      | 4                | 4                |                         |                         |  |  |
| 2.3.1<br>2.3.2     | 3      | 1                |                  | 3                       |                         |  |  |
| 2.3.3              | 4      |                  |                  | 4                       |                         |  |  |
| 2.4                | 1      |                  |                  | 1                       |                         |  |  |
| 2.5                | 2      |                  | 2                | ·                       |                         |  |  |
| 3.1                | 2      | 2                |                  |                         |                         |  |  |
| 3.2                | 5      |                  |                  | 5                       |                         |  |  |
| 3.3                | 4      |                  | 4                |                         |                         |  |  |
| 3.4                | 3      |                  |                  | 3                       |                         |  |  |
| 4.1                | 1      | 1                |                  |                         |                         |  |  |
| 4.2.1              | 3      |                  | 3                |                         | -                       |  |  |
| 4.2.2              | 5<br>4 |                  |                  | 4                       | 5                       |  |  |
| 4.3                | 4      | SECT             | ION B: CHEMISTRY |                         |                         |  |  |
| 1.1                | 2      | 3LC1             | ION B. CHEWISTKI | 2                       |                         |  |  |
| 1.2                | 2      |                  | 2                |                         |                         |  |  |
| 1.3                | 2      |                  |                  |                         | 2                       |  |  |
| 2.1                | 2      |                  |                  | 2                       |                         |  |  |
| 2.2.1              | 1      |                  | 1                |                         |                         |  |  |
| 2.2.2              | 1      |                  |                  | 1                       |                         |  |  |
| 2.2.3              | 1      |                  | 1                |                         |                         |  |  |
| 2.2.4              | 1      |                  | 1                |                         |                         |  |  |
| 2.3.1              | 1      |                  | 2<br>1           |                         |                         |  |  |
| 2.3.3              | 1      |                  | 1                |                         |                         |  |  |
| 2.3.4              | 2      |                  | 2                |                         |                         |  |  |
| 2.4.1              | 1      |                  | 1                |                         |                         |  |  |
| 2.4.2              | 3      |                  |                  |                         | 3                       |  |  |
| 2.5                | 3      |                  | 3                |                         |                         |  |  |
| 3.1                | 1      |                  | 1                |                         |                         |  |  |
| 3.2.1              | 2      | 2                |                  |                         |                         |  |  |
| 3.2.2              | 1      |                  | 1                |                         |                         |  |  |
| 3.3.1              | 1      |                  |                  | 1                       |                         |  |  |
| 3.3.2<br>3.3.3     | 4<br>1 |                  |                  | 4                       | 1                       |  |  |
| 4.1                | 2      | 2                |                  |                         | ı                       |  |  |
| 4.2.1              | 1      | 1                |                  |                         |                         |  |  |
| 4.2.2              | 1      | 1                |                  |                         |                         |  |  |
| 4.3.1              | 1      | 1                |                  |                         |                         |  |  |
| 4.3.2              | 1      |                  |                  | 1                       |                         |  |  |
| 4.4.1              | 1      |                  | 1                |                         |                         |  |  |
| 4.4.2              | 2      |                  | 2                |                         |                         |  |  |
| 4.4.3              | 2      |                  | 2                |                         |                         |  |  |
| 4.5                | 3      |                  | 3                |                         |                         |  |  |
| 4.6                | 1      |                  | 1                |                         |                         |  |  |
| TOTAL              | 100    | 13               | 41               | 35                      | 11                      |  |  |
| %                  | 100%   | 13%              | 41%              | 35%                     | 11%                     |  |  |

