

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: AUTOMOTIVE

NOVEMBER 2024

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 19 pages.

Mechanical Technology: Automotive 2 DBE/November 2024 NSC – Marking Guidelines

QUESTION 1: MULTIPLE-CHOICE (GENERIC)

1.1 A ✓ (1)

1.2 $\mathsf{D}\,\checkmark$ (1)

1.3 A ✓ (1)

1.4 B ✓ (1)

1.5 D ✓ (1)

1.6 C ✓ (1) **[6]**

NSC – Marking Guidelines

DBE/November 2024

QUESTION 2: SAFETY (GENERIC)

2.1 Horizontal band saw (Already been switched on):

- Never leave the band saw unattended while in motion. ✓
- Switch off the band saw when leaving. ✓
- Use a brush or wooden rod to remove chips/swarf/filings. ✓
- When reaching around a revolving band saw, be careful that your clothes do not get caught in the blade. ✓
- Don't stop a revolving bandsaw blade with your hand. ✓
- Don't adjust the band saw while working. ✓
- Don't open any guard while in motion. ✓
- Keep hands away from action points. ✓
- Do not force the band saw blade into the material. ✓
- Apply cutting fluid if required. ✓
- Avoid overcrowding of persons around the machine. ✓
- Do not lean on the machine. ✓
- Check if the machine is running smoothly. ✓

(Any 2 x 1) (2)

2.2 First aid basic treatment:

- Examination ✓
- Diagnosis ✓
- Treatment ✓ (3)

2.3 Oxygen fittings with oil and grease:

It forms a flammable mixture. ✓ (1)

2.4 Disadvantages of the process layout:

- Production is not always continuous. ✓
- Transportation costs between process departments may be high. ✓
- Additional time is spent in testing and sorting as the product moves to the different departments. ✓
- Damage to fragile goods may result from extra handling. ✓

(Any 2 x 1) (2)

2.5 Advantages of the product layout:

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. ✓
- Greater use of unskilled labour is possible. ✓
- Less total inspection is required. ✓
- Less total floor space is needed per unit of production. ✓

(Any 2 x 1) (2) [10]

4 NSC – Marking Guidelines DBE/November 2024

QUESTION 3: MATERIALS (GENERIC)

3.1 **Filing test:**

3.1.1 Files easily ✓ (1)

3.1.2 Hard to file \checkmark (1)

3.1.3 Files easily \checkmark (1)

3.2 **Heat treatment:**

It is the heating \checkmark and cooling \checkmark of metals under controlled conditions / as to change their properties. \checkmark (3)

3.3 **Heating of metal:**

If metal is heated too fast, the outside of the metal becomes hotter \checkmark than the inside, \checkmark then it is very difficult \checkmark to achieve a uniform structure. \checkmark (4)

3.4 Case hardening:

- Low-carbon steel / Mild steel ✓
- Low-alloy steel ✓ (2)

3.5 **Tempering:**

- It is to <u>relieve the strains</u> ✓ induced during the <u>hardening process</u>. ✓
- Increase toughness. ✓✓
- Decrease brittleness. ✓✓
- Achieve a finer grain structure. ✓ ✓

(Any 1 x 2) (2) [14]

5 NSC – Marking Guidelines DBE/November 2024

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

[14]

6 NSC – Marking Guidelines DBE/November 2024

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 Compression test procedures:

5.1.1 **Air filter removed:**

- To allow maximum amount of air to enter the cylinder. ✓
- To get the correct reading ✓

(Any 1 x 1) (1)

5.1.2 Clean around spark plug:

Avoid dirt falling into the engine through the spark plug hole. ✓ (1)

5.1.3 **Disconnect ignition system:**

- To prevent a spark developing. ✓
- To prevent a fire hazard. ✓
- To prevent the possibility of shock. ✓

(Any 1 x 1) (1)

5.1.4 **Record readings:**

- To check if there is a difference in the compression between each cylinder. ✓
- To compare the compression in all cylinders to the specification. ✓

(Any 1 x 1) (1)

(3)

5.2 Cylinder leakage tester:

5.2.1 **Labels:**

A. Pressure regulator ✓

B. Adapter hose/pipe ✓

C. Leakage gauge ✓

5.2.2 Unit of measurement:

kPa/Bar/PSI ✓ (1)

5.2.3 Unit of measurement:

Percentage (%) ✓ (1)

7 NSC – Marking Guidelines DBE/November 2024

5.3 Exhaust gas analyser:

- The hot exhaust system should not be touched with the bare hand. ✓
- Perform the test in a well-ventilated area. ✓
- Keep hands and tools clear from moving engine parts. ✓
- Place the analyser in a secure position to prevent it from falling. ✓
- The inlet hose must not be restricted in any way. ✓
- The hose connections must be airtight. ✓
- Ensure no exhaust, manifolds or vacuum system leaks. ✓
- Condensate must be blown out of the hoses. ✓
- The condenser must be drained after each test. ✓
- When the paper filter becomes light grey, it should be changed. ✓
- The exhaust gas filter must be changed regularly. ✓
- Wear all necessary PPE. ✓
- Ensure that the gas analyser is safely connected to the battery. ✓

(Any 4 x 1) (4)

5.4 On-board diagnostic scanner:

- Scan diagnostic trouble codes ✓
- Clear the trouble codes ✓
- Programme (e.g. make adjustment to electronic control unit) √
- Retrieve information ✓

(Any 2 x 1) (2)

5.5 Wheel balancing machine:

5.5.1 **Identify:**

Wheel balancing machine ✓ (1)

5.5.2 **Functions:**

- Balance a wheel dynamically. ✓
- Balance a wheel statically. ✓

(2)

5.5.3 **Safety device:**

Safety cover/hood/guard ✓

(1)

5.5.4 **Calibration reason:**

So that the machine can display accurate/optimum results. ✓ (1)

5.6 Measure camber with the bubble gauge:

- 1. Ensure bubble gauge is on the centre of the wheel hub. ✓
- 2. Level bubble gauge. ✓
- 3. Read the CAMBER angle. ✓ (3)

[23]

8 NSC – Marking Guidelines DBE/November 2024

QUESTION 6: ENGINES (SPECIFIC)

6.1 Function of the crankshaft:

To convert reciprocating motion ✓ into rotary motion. ✓ (2)

6.2 Part attached to crankshaft nose:

Vibration damper ✓ (1)

6.3 Reciprocating mass kept light:

- To reduce engine vibrations. ✓
- Less twisting force acting on the crankshaft. ✓
- The engine is able to reach its speed sooner. ✓
- Reduced rate of wear on the bore. ✓

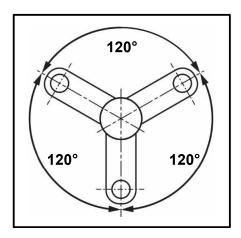
(Any 1 x 1) (1)

6.4 **Obtain the firing order:**

- Determine which valves are the inlet or which are the exhaust valves. ✓
- Turn the engine in the direction it rotates. ✓
- Observe the order in which the valves open to determine the firing order. √

(3)

6.5 **Engine configuration:**


6.5.1 **Type of engine configuration:**

Flat engine/boxer type engine/horizontally opposed engine ✓ (1)

6.5.2 **Labels:**

- A. Connecting rod ✓
- B. Piston ✓
- C. Crankshaft/Crankshaft nose ✓ (3)

6.6 Crankpins of six-cylinder in-line engine:

- THREE crankpins ✓
- Position of crankpins √
- Angles labeled ✓

(3)

9 NSC – Marking Guidelines DBE/November 2024

6.7 **Turbochargers:**

6.7.1 Advantages:

- Increases engine torque. ✓
- Increases engine power. ✓
- Increases volumetric efficiency. ✓
- Improves fuel consumption. ✓
- No engine power sapped./Driven by exhaust gases. ✓
- Power loss due to low atmospheric pressure/high altitude eliminated. √
- Smaller capacity engine required for similar power output. ✓
- It is generally cheaper than a supercharger. ✓

(Any 3 x 1) (3)

6.7.2 **Synthetic oil for turbochargers:**

- Can withstand high pressures. ✓
- Can withstand high temperatures. ✓
- Higher flash point. ✓
- Tends to have a low viscosity. ✓
- Capable of better cooling. ✓
- Faster flow rate. ✓

(Any 2 x 1) (2)

6.7.3 **Turbocharger without vanes:**

Non-variable turbocharger ✓

(1)

6.8 Turbocharger terms:

6.8.1 **Boost:**

Increase of intake manifold pressure ✓ above atmospheric pressure. ✓

(2)

6.8.2 **Turbo lag:**

The delay between pressing the accelerator pedal ✓ and feeling the turbo kick in. ✓

(2)

6.9 **Supercharger:**

6.9.1 **Identify supercharger:**

Twin-Screw supercharger √ (1)

6.9.2 Label supercharger:

- A. Pulley ✓
- B. Casing/housing ✓
- C. Twin screw ✓

(3) **[28]**

DBE/November 2024

QUESTION 7: FORCES (SPECIFIC)

7.1 **Definition of terms:**

7.1.1 Clearance volume:

The volume of the space above the piston crown \checkmark in the cylinder when the piston is at TDC. \checkmark (2)

7.1.2 **Compression ratio:**

The relationship between the total volume \checkmark and the clearance volume \checkmark of a cylinder. (2)

7.2 Calculate the work done:

Work = force ×distance
$$= F \times s$$

$$= (690 \times 10) \checkmark \times 2 \checkmark$$
 OR
$$= 13800 \text{ J}_{\checkmark}$$

$$= 13,8 \text{ kJ}$$
 OR
$$= 3,54 \text{ kJ}$$
 (3)

7.3 Methods to lower the clearance volume:

- Fit thinner gasket between cylinder block and cylinder head. ✓
- Fit piston with suitable higher crowns. ✓
- Machine (Skim) cylinder head. ✓
- Machine (Skim) engine block. ✓

(Any 2 x 1) (2)

7.4 **Cylinder:**

7.4.1 **Labels:**

7.4.2 Calculate the swept volume:

Swept volume =
$$\frac{\pi \times D^2}{4} \times L$$

= $\frac{\pi \times 8.3^2}{4} \times 7.9 \checkmark$
= 427,44 cm³ \(\square\$ (3)

7.4.3 Calculate the clearance volume:

$$CV = \frac{SV}{CR - 1} = \frac{427, 44}{9 - 1} \checkmark$$
= 53,43 cm³ \(\frac{1}{3}\)

SA EXAM PAPERS

DBE/November 2024

7.5 Calculate the indicated power:

P =
$$1400 \times 10^{3}$$

L = $\frac{110}{1000}$
= 0,11 m \checkmark
Area = $\frac{\pi \times D^{2}}{4}$
= $\frac{\pi \times 0,1^{2}}{4}$
= 0,00785398 m² \checkmark
N = $\frac{3600}{60 \times 2}$ \checkmark
= 30 firing strokes per second \checkmark

IP = PLANn
=
$$(1400 \times 10^{3}) \times (0,11) \times (0,00785398) \times (30) \times (4) \checkmark$$

= 145,14 kW \checkmark (7)

7.6 Calculations:

7.6.1 **Torque:**

Torque = Force × radius

$$= 50 \checkmark \times \frac{350}{1000} \checkmark$$

$$= 17,5 \text{ Nm}\checkmark$$
(3)

7.6.2 **Brake power:**

BP =
$$2\pi NT$$

= $2 \times \pi \times \frac{2000}{60} \checkmark \times 17.5 \checkmark$
= $3,67 \text{ kW} \checkmark$ (3)

7.6.3 **Mechanical efficiency:**

$$ME = \frac{BP}{IP} \times 100$$

$$= \frac{3,67}{50} \checkmark \times 100$$

$$= 7,33\% \checkmark \tag{2}$$
[32]

12 NSC – Marking Guidelines DBE/November 2024

QUESTION 8: MAINTENANCE (SPECIFIC)

8.1 **Exhaust gas analysis:**

High carbon monoxide (CO) reading:

8.1.1 POSSIBLE CAUSES	8.1.2 CORRECTIVE MEASURES
Too rich mixture. ✓	Reset/adjust the air fuel mixture. ✓
Dirty or restricted air filter. ✓	Replace/Clean air filter. ✓
Ignition misfire. ✓	Repair ignition misfire. ✓
Thermostat stuck open. ✓	Replace thermostat. ✓
Faulty coolant sensor. ✓	Replace coolant sensor. ✓
 Blocked PCV valve. ✓ 	Unblock/clean/replace PCV valve. ✓
Faulty catalytic convertor. ✓	Replace catalytic convertor. ✓
Carburettor flooding. ✓	Correct carburettor fault. ✓
Choke valve stuck closed. ✓	Repair choke valve. ✓
Fuel pressure too high. ✓	Check and repair the return fuel line
	of restrictions or kinks. ✓
	 Replace fuel pressure regulator√
	Select correct pump according to
	vehicle specification. ✓
(Any 1 x 1)	(Any 1 x 1)

Low carbon dioxide (CO₂) reading:

8.1.3 POSSIBLE CAUSES	8.1.4 CORRECTIVE MEASURES
 Incorrect air-fuel mixture. ✓ 	 Reset/ adjust the air fuel mixture. ✓
 Dirty or restricted air filter. ✓ 	 Replace/Clean air filter. ✓
 Ignition misfire. ✓ 	 Repair ignition misfire. ✓
 Thermostat stuck open. ✓ 	 Replace thermostat. ✓
 Faulty coolant sensor. ✓ 	 Replace coolant sensor. ✓
 Blocked PCV valve. ✓ 	 Unblock clean/replace PCV valve. ✓
 Faulty catalytic convertor. ✓ 	 Replace catalytic convertor. ✓
 Carburettor flooding. ✓ 	 Correct carburettor fault. ✓
 Choke valve stuck closed. ✓ 	 Repair choke valve. ✓
Fuel pressure too high. ✓	 Check and repair the return fuel line of restrictions or kinks. ✓
	 Replace fuel pressure regulator√
	 Select correct pump according to vehicle specification. ✓
• Expansi dae looks ./	Repair exhaust leaks. ✓
Exhaust gas leaks. ✓	
 Vacuum leaks on the intake. ✓ 	 Repair vacuum leaks on the intake. ✓
(Any 1 x 1)	(Any 1 x 1)

(4)

13 NSC – Marking Guidelines DBE/November 2024

8.2 Compression test:

8.2.1 **Maximum variation allowed:**

10% ✓ (1)

8.2.2 Low compression reading:

POSSIBLE CAUSES	CORRECTIVE MEASURES
Worn rings. ✓	Fit new rings. ✓
Worn piston. ✓	 Fit new pistons. ✓
 Worn bore. ✓ 	Re-bore the cylinders or resleeve. ✓
 Leaking inlet valve. ✓ 	Replace or lap valve. ✓
 Leaking exhaust valve. ✓ 	Replace or lap valve. ✓
Blown head gasket. ✓	Replace head gasket. ✓
 Cracked cylinder head. ✓ 	Replace or repair cylinder head. ✓
 Cracked engine block. ✓ 	Replace engine block. ✓
(Any 1 x 1)	(Any 1 x 1)

8.3 **Cylinder leakage test locations:**

- Exhaust pipe/system ✓
- Intake system ✓
- Oil filler hole ✓
- Dipstick ✓
- Expansion tank/radiator ✓
- Adjacent spark plug hole ✓

(Any 4 x 1) (4)

8.4 Causes of a low oil pressure reading:

- Blocked strainer ✓
- Worn oil pump ✓
- Oil viscosity too low ✓
- Dirty oil ✓
- Low oil level ✓
- Blocked oil filter ✓
- Blocked oil channels ✓
- Excessive oil clearances ✓
- Defective pressure relief valve ✓

(Any 4 x 1) (4)

8.5 **High fuel pressure reading:**

POSSIBLE CAUSES	CORRECTIVE MEASURES	
Restriction in the return fuel line	Check and repair the return fuel line	
post the fuel tester. ✓	of restrictions or kinks. ✓	
 Faulty fuel pressure regulator. ✓ 	Replace fuel pressure regulator. ✓	
Wrong fuel pump used. ✓	Select correct pump according to	
>>	vehicle specification. ✓	
(Any 2-x-1)	EVAM DADEDS (Any 2 x 1)	

14

DBE/November 2024

NSC – Marking Guidelines

- 8.6 Cooling system pressure test manufacturers' specifications:
 - Coolant (Antifreeze-water) ratio. ✓
 - Pressure in the cooling system. ✓
 - Pressure on the radiator cap. ✓

(Any 2 x 1) (2)

- 8.7 Functions of the radiator cap:
 - Regulate the cooling system pressure. ✓
 - Seals the cooling system from leaks. ✓
 - Allows coolant to be drawn back into the radiator when engine cools down. ✓

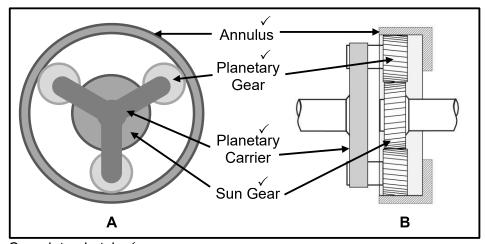
(Any 2 x 1) (2)

[23]

15 NSC – Marking Guidelines DBE/November 2024

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 **Disadvantages of automatic gearbox:**


- More expensive to manufacture. ✓
- Repairs are expensive. ✓
- Special tools and training needed to repair gearbox. ✓
- Special towing techniques must be used when towed over a long distance. ✓
- Generally heavier than a manual gearbox. ✓
- Vehicle cannot be push-started. ✓

(Any 2 x 1) (2)

9.2 Torque converter operation:

- The spinning pump/impeller throws the oil into the vanes of the turbine. ✓
- This turbine rotates the gearbox input shaft. ✓
- The oil circulates through the turbine vanes and strikes the stator. ✓
- The stator redirects the path of the oil in the direction of pump rotation. ✓
- Torque is multiplied when it leaves the pump again to enter the turbine. ✓ (5)

9.3 Single epicyclic gear system:

Complete sketch ✓

Candidate may draw either sketches **A** or **B**.

(5)

9.4 Advantages of gear ratios:

9.4.1 **Forward reduction (1st gear):**

- Improved pull away of vehicle. ✓
- Increased torque output. ✓
- Easier hill climbing. ✓

9.4.2 **Reverse gear:**

Vehicle is able to travel backwards. ✓ (1)

Mechanical Technology: Automotive DBE/November 2024 16 NSC - Marking Guidelines 9.4.3 Forward overdrive (5th gear): Increase speed ✓ Decrease engine revolutions ✓ Better fuel economy ✓ (Any 1 x 1) (1) 9.5 Components relating to an automatic gearbox: 9.5.1 **Hydraulic pistons:** • Control the brake bands which allows for the change of gear ratio. ✓ • Engage the clutches which allows for the change of gear ratio. ✓ (Any 1 x 1) (1) 9.5.2 **Brake bands:** The brake band holds the annulus stationary. ✓ (1) 9.5.3 **Transmission control unit:** It controls the electronic gear shifting in an automatic gearbox. ✓ (1) [18]

17

DBE/November 2024

NSC – Marking Guidelines

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONIC) (SPECIFIC)

10.1 **Tyre wear pattern:**

10.1.1 Cause the tyre wear pattern:

Camber ✓ (1)

10.1.2 Faults on the vehicle suspension:

- Suspension misalignment ✓
- Worn wheel bearings ✓
- Bent strut ✓
- Bent/Damaged lower control arms ✓
- Damaged lower control arms bushes ✓
- Damaged strut mountings ✓
- Worn ball joints ✓

(Any 2 x 1) (2)

10.1.3 **Correct tyre wear cause:**

- Re-align suspension ✓
- Replace wheel bearings ✓
- Replace strut ✓
- Replace lower control arm ✓
- Replace lower control arm bushes ✓
- Replace strut mountings ✓
- Replace ball joints ✓

(Any 2 x 1) (2)

10.2 **Definitions of alignment angles:**

10.2.1 **Positive caster:**

Positive caster is the backward tilt of the king pin at the top, ✓ when viewed from the side. ✓ (2)

10.2.2 King pin inclination:

King pin inclination is the inward tilt of the top \checkmark of the king pin viewed from the front. \checkmark (2)

10.3 Air-intake system sensors:

- Throttle position sensor (TPS) ✓
- Manifold absolute pressure sensor (MAP) ✓
- Mass air flow sensor (MAF) ✓
- Air intake temperature sensor. ✓

(Any 3 x 1) (3)

10.4 Function of knock sensor:

- Senses engine knock. ✓
- Sends signal to the ECU. ✓

(2)

18

Mechanical Technology: Automotive

NSC – Marking Guidelines 10.5 Components of Distributorless Ignition System (DIS): • ECU ✓ Integrated coil ✓ Spark plug ✓ Ignition switch ✓ Crankshaft position sensor ✓ (Any 2 x 1) (2) 10.6 **Catalytic convertor:** Oxidation ✓ Reduction ✓ (2) 10.7 Functions of the speed control system: Controls the throttle opening electronically. ✓ Keeps the vehicle at a constant speed. ✓ (2) 10.8 **Alternator:** 10.8.1 Labels: A. Pulley ✓ B. Front bracket/Front cover/housing ✓ C. Bearing ✓ D. Stator ✓ (4) 10.8.2 Rotor: Contains the slip rings ✓ which provides a movable electrical connection. ✓ Induces current ✓ flow into the stator. ✓ To create a rotating ✓ magnetic field/electromagnet. ✓ (Any 1 x 2) (2) 10.8.3 Regulator: Controls voltage ✓ Controls current flow ✓ (Any 1 x 1) (1) 10.8.4 Function of the rectifier: Converts the AC ✓ to DC. ✓ (2)

DBE/November 2024

Mechanical Technology: Automotive 19 DBE/November 2024 NSC – Marking Guidelines

10.9 **Injector:**

The fuel pressure at the injector ✓

- Injection duration ✓
- Size of the injector nozzle hole/orifice ✓
- Throttle position ✓
- Amount of atmospheric pressure ✓
- Ambient temperature ✓
- Air-fuel ratio ✓
- Engine load ✓
- Engine speed (RPM) ✓
- Fuel type ✓
- Engine temperature✓
- Fuel temperature✓

(Any 3×1) (3)

[32]

TOTAL: 200