
You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

Physical Sciences		NSC	March 2025 Test
QUES	STION 1		
1.1	A√√		(2)
1.2	В ✓✓		(2)
1.3	A✓✓		(2)
1.4	В ✓✓		(2)
1.5	D✓✓		(2)
1.6	C√√		(2) [12]

QUESTION 2

2.1

Ac	cepted labels
W	Fg/ Fw/ weight/588 N/gravitational force√
F	
f	(kinetic) friction/F _f /f _k √
Ν	F _N /Normal/F _{normal}

Notes

- Mark awarded for label and arrow.
- Do not penalise for length of arrows since drawing is not to scale.
- Any other additional force(s): Max $\frac{3}{4}$
- If everything correct, but no arrows: Max/Maks $\frac{3}{4}$.

(4)

2.2

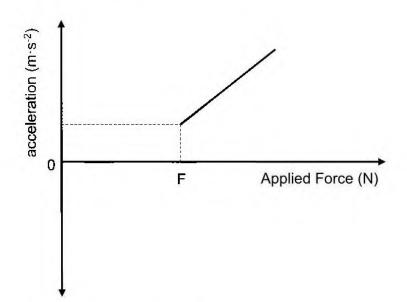
LEFT AS POSITIVE $F_{net} = ma
ightarrow Any one$ F + f = ma ∫ $F - 70 \checkmark = (60)(1,5) \checkmark$ F = 160 N 🗸

LEFT AS NEGATIVE $F_{net} = ma \} \checkmark Any one$ F+f=ma -F + 70 ✓ = (60)(-1,5) ✓ F = 160 N 🗸

(4)

Note: DO NOT award the fourth mark if the final anwer is F = -160 N

Physical Sciences


NSC

March 2025 Test

2.3

~~
1

(3)

2.4	The boy continues to move forward \checkmark	(1)
2.5	Newton's First law√	

A body will remain in its state of rest or motion at constant velocity unless a	
non-zero net force acts on it.√√	(3)
	[15]

Physic	cal Sciences	
i nyon	001 001011000	

NSC

March 2025 Test

QUESTION 3

3.1 An <u>object</u> which has been given an <u>initial velocity</u> and then moves under the influence of <u>gravitational force only</u>. $\checkmark\checkmark$

(2)

Marking criteria: If any of the underlined key words/phrases in the correct context is omitted deduct 1 mark

3.2 9,8 m·s⁻² \checkmark downwards \checkmark

(2)

(3)

3.3.1	UPWARDS AS POSITIVE	DOWNWARDS AS POSITIVE	
	v _f = v _i + a∆t √	v _f = v _i + a∆t √	
	0 = 20 + (-9,8)∆t √	0 = -20 + (9,8)∆t √	
	Δt = 2,04 s ✓	Δt = 2,04 s ✓	

OPTION 4 POSITIVE MARKING FROM Q 3.3.1 maximum height = $\frac{1}{2}$ b·h \checkmark = $\frac{1}{2}$ (2,04)(20) \checkmark = 20,40 m \checkmark
F

3.4.1 UPWARDS AS POSITIVE $v_f = v_i + a\Delta t \checkmark$ $= 20 + (-9,8)(5) \checkmark$ $= -29 \text{ m} \cdot \text{s}^{-1}$ $\therefore v_f = 29 \text{ m} \cdot \text{s}^{-1} \checkmark$

DOWNWARDS AS POSITIVE $v_f = v_i + a\Delta t \checkmark$ $= -20 + (9,8)(5) \checkmark$ $= 29 \text{ m} \cdot \text{s}^{-1} \checkmark$

(3)

Sciences

NSC

March 2025 Test

OPTION 1 UPWARDS AS POSITIVE	OPTION 1 UPWARDS AS NEGATIVE
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \sqrt{2}$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
2	2
$= (20)(5) \checkmark + \frac{1}{2}(-9,8)(5)^2 \checkmark$	$= (-20)(5) \checkmark + \frac{1}{2}(9,8)(5)^2 \checkmark$
= -22,50 height = 22,50 m ✓	= 22,50 m✓
OPTION 2	OPTION 2
UPWARD AS POSITIVE POSITIVE MARKING FROM Q 3.3.1 $\Delta t = 5 - 2x2.04 = 0.92s$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	DOWNWARD AS POSITIVE POSITIVE MARKING FROM Q 3.3.1 $\Delta t = 5 - 2x2.04 = 0.92s$ $\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
= $(-20)(0,92) \checkmark + \frac{1}{2}(-9,8)(0,92)^2 \checkmark$ = $-22,55$ height = 22,55 m \checkmark	= $(20)(0,92) \checkmark + \frac{1}{2}(9,8)(0,92)^2 \checkmark$ = 22,55 m \checkmark
OPTION 3	OPTION 3
UPWARDS AS POSITIVE	UPWARDS AS NEGATIVE
POSITIVE MARKING FROM Q 3.3.1 Starting from the maximum height	POSITIVE MARKING FROM Q 3.3.1 Starting from the maximum height
$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	$\Delta y = v_i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$
$= (0)(2,96) \checkmark + \frac{1}{2}(-9,8)(2,96)^2 \checkmark$	2
$= (0)(2,96) + \frac{1}{2}(-9,6)(2,96) + \frac{1}{2$	$= (0)(2,96) \checkmark + \frac{1}{2}(9,8)(2,96)^2 \checkmark$
Height of the building = $42,93 - 20,41$	= 42,93 m Height of the building = 42,93 – 20,41
= 22,52 m√	= 22,52 m√
OPTION 4	OPTION 5
POSITIVE MARKING FROM Q 3.4.1	POSITIVE MARKING FROM Q 3.4.1
$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$	$v_f^2 = v_i^2 + 2a\Delta y \checkmark$
$\Delta y = \left(\frac{20 - 29}{2} \checkmark\right) (5) \checkmark$	$(-29)^2 \checkmark = 20^2 + 2(-9,8) \Delta y \checkmark$
	∆y = 22,50 m ✓
∆y = 22,50 m ✓	
OPTION 6	1
POSITIVE MARKING FROM Q 3.3.1	& 3.4.1
$\Delta y = \left(\frac{v_i + v_f}{2}\right) \Delta t \checkmark$	
$\Delta y = \left(\frac{0-29}{2}\right) (2,96) \checkmark$	
/	
$\Delta y = 42,93 \text{ m}$	
Height of the building = 42,93 – 20,41	= 22,52 m√

SA EXAM PAPERS Proudly South African

March 2025 Test

QUESTION 4

4.1 $\frac{80}{3.6} = 22,22 \text{ m} \cdot \text{s}^{-1} \checkmark \checkmark$

4.2 **POSITIVE MARKING FROM QUESTION 4.1 RIGHT AS POSITIVE** $\Delta p = m(v_f - v_i) \checkmark$ $= 1\ 600\ (6 - 22,22) \checkmark$ $= -25\ 952\ \text{kg}\ \text{m}\cdot\text{s}^{-1}$ $= \underline{25\ 952\ \text{kg}\ \text{m}\cdot\text{s}^{-1}\ \text{to the left}} \checkmark$ **RIGHT AS NEGATIVE** $\Delta p = m(v_f - v_i) \checkmark$ $= 1600\ (-6 - (-22,22)) \checkmark$ $= 25\ 952\ \text{kg}\ \text{m}\cdot\text{s}^{-1}$ $= \underline{25\ 952\ \text{kg}\ \text{m}\cdot\text{s}^{-1}\ \text{to the left}} \checkmark$

(3)

(1)

(2)

4.3 POSITIVE MARKING FROM QUESTION 4.2

25 952 kg m·s⁻¹ to the right ✓

4.4 Marking criteria

4.5

If any of the underlined key words/phrases in the correct context is omitted deduct 1 mark

In an isolated system the total linear momentum is conserved/remains constant. $\checkmark\checkmark$

(2)

OPTION 1 POSITIVE MARKING FROM QUESTION 4.1 RIGHT AS POSITIVE $\sum_{p_i = \sum p_f} f_{m_c v_{ic} + m_b v_{ib} = (m_c + m_b) v_f} \quad \forall \text{Any one}$ $(1600)(22,22) + 0 \quad \forall = (1600 + m_b)(6) \quad \forall$

∴ m_b = 4325,33 kg √

RIGHT AS NEGATIVE $\sum p_i = \sum p_f$ ✓ Any one $m_c v_{ic} + m_b v_{ib} = (m_c + m_b) v_f$ $(1600)(-22,22) + 0 \checkmark = (1600 + m_b)(-6) \checkmark$ ∴ m_b = 4325,33 kg √ **OPTION 2 RIGHT AS POSITIVE** $\Delta p_b = - \Delta p_c$ Any one $m_b(v_{bf} - v_{bi}) = - m_c(v_{cf} - v_{ci})$ $m_b(6 - 0) \checkmark = -(-25952) \checkmark$ ∴ m_b = 4325,33 kg √ **RIGHT AS NEGATIVE** $\Delta p_b = - \Delta p_c$ Any one $m_b(v_{bf} - v_{bi}) = - m_c(v_{cf} - v_{ci})$ m_b(-6 - 0) ✓ = -25952 ✓ ∴ m_b = 4325,33 kg ✓

(4) [**12**]

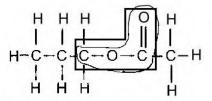
SA EXAM PAPERS

Phy	/sical	Sciences
	oloui	001011000

NSC

March 2025 Test

QUESTION 5


5.1	A series of organic compounds that can be described by the same gener	al
	formula. VV OR	
	A series of organic compounds in which one member differs from the next with a CH ₂ group.	(2)
5.2.1	Aldehydes ✓	(1)
5.2.2	Butanone or Butan-2-one √√	(2)

5.3.1 3,4-dibromo-2,2-dimethylpentane

Marking criteria	
 Correct stem: pentane ✓ 	
 Correct substituents: dibromo and dimethyl ✓ 	
 IUPAC name completely correct ✓ 	

- 5.4.1 C and D (must have both) $\checkmark \checkmark$ (2)
- 5.4.2 $F \checkmark$ (Accept the name of the compound)
- 5.5.1

5.3.2

Marking criteria

- Correct functional group ✓
- Correct number of carbon atoms on either side of functional group ✓
- Whole structure correct <

5.5.2	Propyl⊻ etha noate ✓	

5.5.3 Sulphuric acid / H₂SO₄ ✓

(1)

(3)

(2)

(1)

Physical Sciences

NSC

March 2025 Test

Marking criteria 5.6

- Calculate moles of C5H10O2 .
- Using the mole ratio: $n(C_5H_{10}O_2):n(C_3H_7OH) = 1:1$ Substitute 60 g·mol⁻¹ into $n = \frac{m}{M}$.
- Substitute into the formula for percentage purity
- Final answer

$n(C_5H_{10}O_2) = \frac{m}{M}$	$n(C_3H_7OH) = \frac{m}{M}$	
$=\frac{90,78}{102} \checkmark = 0,89 \text{ mol}$	$0,89\checkmark = \frac{m}{60}\checkmark$ $m = 53.4 \text{ g}$	
n(C ₅ H ₁₀ O ₂) : n(C ₃ H ₇ OH) 1:1	% Purity = $\frac{53,4}{60} \times 100\% \checkmark$ = 89% \checkmark	
	= 89% ✓	(5) [23]

QUESTION 6

6.1	Flammable/inflammable ✓	(1)	
6.2	B√ and D√ (accept the names of compounds)	(2)	
6.3	The boiling points of carboxylic acids are higher than the boiling points of alcohols (of comparable molecular mass). $\sqrt[4]{\sqrt{4}}$ OR		
	The longer the chain length the higher the boiling point		
	OR		
	The boling points of alcohols are lower than the boiling points of carboxylic acids (of comparable molecular mass).	(2)	
6.4	Vapour pressure of compound B will be higher than that of compound A. $\checkmark\checkmark$ OR		
	Vapour pressure of compound A will be lower than that of compound B.	(2)	
6.5	 Carboxylic acid in experiment 2 (propanoic acid) has a longer chain length/greater surface area than the carboxylic acid in experiment 1 (methanoic acid).√ The longer the chain length/greater surface area, the stronger the intermolecular forces.√ More energy needed to overcome the intermolecular forces in 		
	compound C .	(0)	
		(3) [10]	
		[10]	

Proudly South African

SA EXAM PAPERS

 4,4-dimethylpentan-1-ol OR 4,4-dimethyl-1-pentanol Marking criteria Correct stem (pentanol) ✓ Correct substituent: dimethyl ✓ IUPAC name completely correct ✓ Esters ✓✓ Alkenes ✓ Halogenation / bromination ✓ 	Ph	ysical Sciences	NSC	March 2025 Test
2 4,4-dimethylpentan-1-ol OR 4,4-dimethyl-1-pentanol Marking criteria • Correct stem (pentanol) \checkmark • Correct substituent: dimethyl \checkmark • IUPAC name completely correct \checkmark 3 Esters \checkmark 4 Alkenes \checkmark 5 Halogenation / bromination \checkmark 6 $\begin{array}{c} H \\ H \\ H \\ C \\ -H \\ H \\ $	UE	STION 7		
Marking criteria • Correct stem (pentanol) \checkmark • Correct substituent: dimethyl \checkmark • IUPAC name completely correct \checkmark 7.3 Esters \checkmark 7.4 Alkenes \checkmark 7.5 Halogenation / bromination \checkmark 7.6 H <td>7.1</td> <td>Hydroxyl (group) √</td> <td></td> <td></td>	7.1	Hydroxyl (group) √		
• Correct stem (pentanol) \checkmark • Correct substituent: dimethyl \checkmark • IUPAC name completely correct \checkmark 7.3 Esters \checkmark 7.4 Alkenes \checkmark 7.5 Halogenation / bromination \checkmark 7.6 $\begin{array}{c} H \\ H \\ -C \\ -H \\ H \\ -C \\ -H \\ H \\ -C \\ -H \\ H \\ -C \\ -H \\ -C \\ -H$	7.2	4,4-dimethylpentan-1-ol OR 4	,4-dimethyl-1-pentanol	
7.4 Alkenes \checkmark 7.5 Halogenation / bromination \checkmark 7.6 $\begin{array}{c} H \\ H - C - H \\ H \\ C = C - C - C - C - C - H + Br_{2} \longrightarrow Br - C - C - C - C - H \\ H$		 Correct stem (pentanol) ✓ Correct substituent: dimet 	hyl ✓	
7.5 Halogenation / bromination \checkmark 7.6 $\begin{array}{c} H \\ H - C - H \\ H \\ C = C - C - C - C - C - H + Br_{2} \longrightarrow Br - C - C - C - C - H \\ H$	7.3	Esters √√		
7.6 H H C -H H H H H H H H H H H H H H H H	7.4	Alkenes ✓		
$H - C - H \qquad H - $	7.5	Halogenation / bromination \checkmark		
	7.6	H - C - H $H - C - H$ $H - C - C - C - C - C - H$ $H - C - H$ $H - C - H$ H H H H	$+ Br_{2} \longrightarrow Br-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C$	н -С-Н Н
 Addition of Br₂ ✓ 		Correct structure	e for compound Z 🗸	

