

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

Confidential

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

TECHNICAL SCIENCES P2

NOVEMBER 2024

MARKS: 75

TIME: 11/2 hours

This question paper consists of 11 pages and 4 data sheets.

Technical Sciences/P2 2 DBE/November 2024 NSC Confidential

INSTRUCTIONS AND INFORMATION

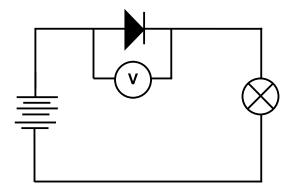
- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of SIX questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. Write neatly and legibly.

3 NSC Confidential DBE/November 2024

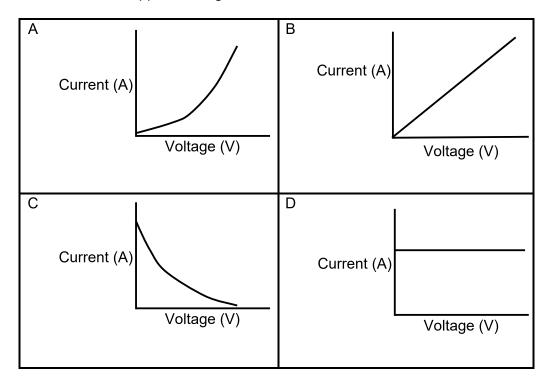
QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, e.g. 1.6 D.

1.1 Consider the following examples of isomers:


Example 1 but-1-ene		but-2-ene	
Example 2	1-chloropropane	2-chloropropane	

Both examples represent ...


- A functional isomers.
- B positional isomers.
- C chain isomers.
- D structural isomers. (2)
- 1.2 Which ONE of the following is the CORRECT condensed structural formula for 2,3-dimethylbutane?
 - A CH₃C(CH₃)₂CH₂CH₃
 - B CH₃CH(CH₃)CH₂CH₂CH₃
 - C CH₃CH(CH₃)CH(CH₃)CH₃
 - $D \qquad CH_3CH_2CH_2CH_2CH_3 \qquad (2)$

4 NSC Confidential DBE/November 2024

1.3 Consider the circuit diagram below.

Which ONE of the following graphs best describes the relationship between the current and applied voltage?

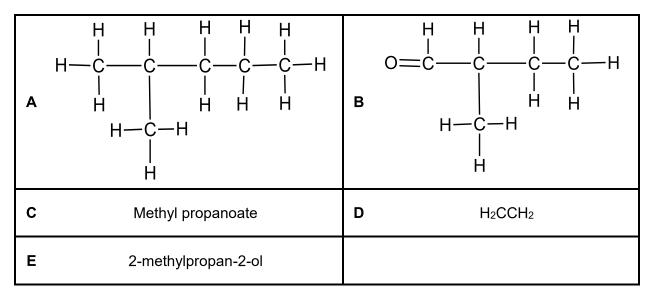
1.4 Which ONE of the following combinations is TRUE for an electrolytic cell?

	ANODE	CATHODE	ENERGY CONVERSION
Α	Negative	Positive	Chemical to electrical
В	Positive	Negative	Electrical to chemical
С	Negative	Positive	Mechanical to electrical
D	Positive	Negative	Electrical to mechanical

(2)

(2)

Technical Sciences/P2	5	DBE/November 2024
	NSC Confidential	


- 1.5 ONE of the disadvantages of photovoltaic cells is that ...
 - A toxic chemicals are used in the production process.
 - B the cells are placed on an unused space on rooftops.
 - C photovoltaic systems are quiet and not a disturbance.
 - D energy produced by solar cells is clean.

(2) **[10]**

6 NSC *Confidential* DBE/November 2024

QUESTION 2 (Start on a new page.)

Consider the following organic compounds represented by letters **A** to **E**.

2.1 Refer to compound **A** and write down the:

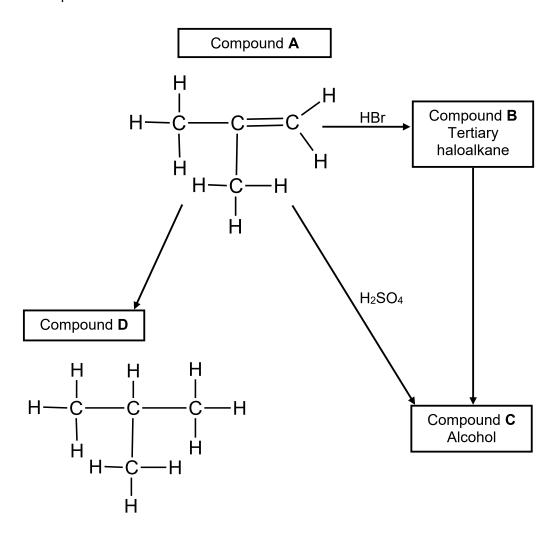
- 2.1.1 IUPAC name (2)
- 2.1.2 Molecular formula (1)
- 2.1.3 General formula for the homologous series to which the compound belongs (1)
- 2.1.4 Molecular formulae of the products formed during the combustion of this compound (2)
- 2.2 Refer to compound **B** and write down the:
 - 2.2.1 Name of the homologous series to which this compound belongs (1)
 - 2.2.2 Name of its functional group (1)
- 2.3 Compound **C** is formed when a carboxylic acid reacts with an alcohol.
 - 2.3.1 Draw the structural formula of the functional group of compound **C**. (1)
 - 2.3.2 Write down the IUPAC name of the carboxylic acid used. (1)
- 2.4 Write down the letter that represents a compound that is a/an:
 - 2.4.1 Monomer of polythene (1)
 - 2.4.2 Alcohol (1)
- 2.5 Classify the alcohol referred to in QUESTION 2.4.2 as PRIMARY, SECONDARY or JERTIARY.

A EYAM DADEDS

SA EXAM PAPERS

7 NSC Confidential DBE/November 2024

QUESTION 3 (Start on a new page.)


Use the organic compounds below to answer the questions that follow.

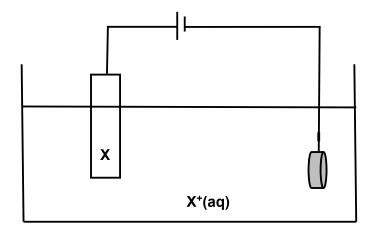
Bro	moethane	Ethanol	Ethane	Ethanoic acid	
3.1	Define the term boiling point.				
3.2	Arrange the	e compounds in order o	f decreasing boiling po	int.	(1)
3.3	Write down the relationship between the boiling points of organic compounds and their intermolecular forces.				(2)
3.4	Which ONE of the compounds will have the highest vapour pressure when they are compared at the same temperature?				(1)
3.5	Identify the type of intermolecular forces present in bromoethane and ethane, and compare their strengths.				(3)
3.6	Methyl met	hanoate is an isomer of	ethanoic acid.		
	3.6.1	What type of isomers ar	e these organic compo	ounds?	(1)
	3.6.2 Define the type of isomer referred to in QUESTION 3.6.1.				(2) [12]

8 NSC Confidential DBE/November 2024

QUESTION 4 (Start on a new page.)

The flow chart below illustrates different organic reactions in which compound ${\bf A}$ is converted to different compounds, ${\bf B}, {\bf C}$ and ${\bf D}$. Study the flow chart carefully and then answer the questions that follow.

- 4.1 Write down the homologous series to which compound **A** belongs. (1)
- 4.2 Consider the reaction in which compound **A** is converted to compound **B**.
 - 4.2.1 Draw the structural formula of compound **B**. (2)
 - 4.2.2 Explain why compound **B** is called a tertiary haloalkane. (2)
 - 4.2.3 Why is it important that there should be no water in the reaction mixture? (2)

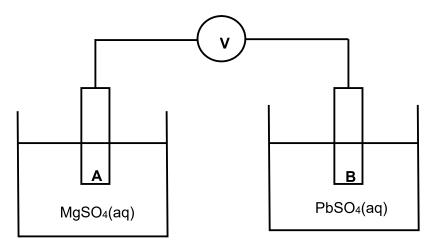


Technica	l Sciences/P	2 9 NSC Confidential	DBE/November 2024	
4.3	Consider	the reaction in which compound B is converted to conver	ompound C .	
	4.3.1	Write down ONE reaction condition for this reaction	n.	(1)
	4.3.2	Use molecular formulae to write a balanced chem this reaction.	nical equation for	(3)
4.4	Consider	the conversion of compound A to compound C .		
	4.4.1	Write down the NAME and the TYPE of this chemi	cal reaction.	(2)
	4.4.2	Write down the chemical formula of the inorganic used.	c reactant that is	(1)
4.5	Consider down the	the reaction where compound ${\bf A}$ is converted to co :	mpound D . Write	
	4.5.1	NAME of the inorganic reactant needed for the rea	ction	(1)
	4.5.2	Symbol of the catalyst used during the reaction		(1) [16]

10 NSC Confidential DBE/November 2024

QUESTION 5 (Start on a new page.)

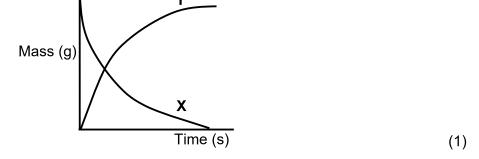
A learner wants to electroplate an iron ring with silver to enhance its appearance and increase its value. The iron ring is cleaned thoroughly before the electroplating takes place.



5.6	Write down the half-reaction taking place at the iron ring.	(2) [10]
5.5	Write down the NAME of ion X ⁺ .	(1)
5.4	Give a reason for the answer to QUESTION 5.3.	(2)
5.3	Is electrode X the anode or cathode?	(1)
5.2	Why must the iron ring be cleaned thoroughly before electroplating takes place?	(2)
5.1	Define the term <i>electrolysis</i> .	(2)

Technical Sciences/P2 11 DBE/November 2024 NSC Confidential

QUESTION 6 (Start on a new page.)


A group of learners set up an electrochemical cell, as shown in the diagram below. The cell is INCOMPLETE.

- 6.1 What type of electrochemical cell is this? (1)
- 6.2 Explain the answer to QUESTION 6.1. (2)
- 6.3 What is the reading on the voltmeter? (1)
- 6.4 Write down the name of the component needed to complete the circuit. (1)
- 6.5 State TWO functions of the component named in QUESTION 6.4. (2)

The component in QUESTION 6.4 is inserted and the voltmeter reading increases. The graphs below show the change in the masses of both electrodes **A** and **B** while the cell is in operation.

6.6 Which graph (**X** or **Y**) below represents the change in the mass of electrode **A**? Write down only **X** or **Y**.

- 6.7 Is electrode **A** an oxidising agent or reducing agent? Explain the answer. (2)
- 6.8 Calculate the emf of the cell while in operation. (4) [14]

TOTAL: 75

1 NSC Confidential

DBE/November 2024

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12 VRAESTEL 2

TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,01 x 10 ⁵ Pa
Standard temperature Standaardtemperatuur	Τ ^θ	0 °C/273 K

TABLE 2/TABEL 2: FORMULAE/FORMULES

Emf/ <i>Emk</i>	E^{θ} cell = E^{θ} cathode - E^{θ} anode / E^{θ} sel = E^{θ} katode - E^{θ} anode
	or/of
	E^{θ} cell = E^{θ} reduction - E^{θ} oxidation / E^{θ} sel = E^{θ} reduksie - E^{θ} oksidasie
	or/of
	E^{θ} cell = E^{θ} oxidising agent - E^{θ} reducing agent / E^{θ} sel = E^{θ} oksideermiddel - E^{θ} reduseermiddel

Ш	16 17 18 (VI) (VIII) (VIII)	8 0 0 9 10 16 4 F Ne 16 17 18 32 3, Ce Ar 35,5 40	8,2 8 9 3	2,5 2,5 2,5 At	69 70 71 Tm Yb Lu 169 173 175 101 102 103 Md No Lr
ELEMENTS/ <i>TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE</i>	(5)	0,8 1,2 7	2,0	7,9 209 2,1 2,9 2,1 2,9 2,1 2,9 2,1 2,0 2,1 2,0 2,1 2,0 2,1 2,0 3,1 2,0 3,1 3,1 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9 4,9	68 Er 167 100 Fm
: TABEL VA	13 14 (III) (IV)		31 3,1 8,1	49 50 115 119 81 82 82 82 76 204 207	66 67 Dy Ho 163 165 98 99 Cf Es
ERIODIEKE	7	1,5 2,0	9'۱	Ag 7, 7 48 7, 108 7, 7, 80	65 Tb 159 97 Bk
BEL 3: DIE F	10 11	Symbol Simbool mic mass	-6-	4 45 46 46 47 46 47 46 47 46 47 46 47 47 47 47 47 47 47 47 47 47 47 47 47	63 64 Eu Gd 152 157 95 96 Am Cm
MENTS/TA	8 9 Atomic number Atoomgetal	it 63,5 Cu Symbol 63,5 te relative atomic mass	81	Ru A, Rh 101 103 76 77 77 190 192	1 62 n Sm 150 3 94 p Pu
	~	onegativity— negatiwiteit Approximate rela	_	6,1 2,2 2,2 8,8 8,6 8,6 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8 1,8	60 61 Nd Pm 144 92 93 U Np 238
IODIC TAI	5 6 KEY/SLEUTEI	Electronegativity Elektronegatiwite Approxima Benaderde	9'l	41	59 141 91 Pa
TABLE 3: THE PERIODIC TABLE OF	4 ሪ ሟ	-	9'l	4.7 9.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5	58 Ce 140 90 Th Th
TABLE	ო		°, 3° 21 45 45	1,2 89 × 39 139 139	88 AC
	L (E) L I I I I I I I I I I I I I I I I I I	2 2 2 2 8 8 2 2 2 2 3 2 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	0°1 0°1	on 10 Son 10 So	226 6,0 8 8 8 6,0 226

Please turn over

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/ <i>Halfreaksies</i>			E [⊕] (V)
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	=	2H ₂ O	+1,77
MnO ₄ -+ 8H+ +5e-	=	Mn ²⁺ + 4H ₂ O	+ 1,51
Cℓ ₂ (g) + 2e ⁻	=	2Cl-	+ 1,36
Cr ₂ O ₇ ²⁻ + 14H ⁺ +6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	1	2Br ⁻	+ 1,07
NO ₃ -+ 4H+ + 3e-	1	NO(g) + 2H ₂ O	+ 0,96
Hg²+ + 2e⁻	1	Hg(ℓ)	+ 0,85
Ag+ + e -	7	Ag	+ 0,80
NO ₃ ⁻ + 2H ⁺ + e ⁻	=	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	1	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54
Cu+ + e⁻	=	Cu	+ 0,52
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	=	40H ⁻	+ 0,40
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + e ⁻	=	Cu ⁺	+ 0,16
Sn⁴+ + 2e⁻	=	Sn ²⁺	+ 0,15
S + 2H⁺ + 2e⁻	=	$H_2S(g)$	+ 0,14
2H⁺ + 2e⁻	#	H₂(g)	0,00
Fe ³⁺ + 3e ⁻	=	_Fe	- 0,06
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Sn²+ + 2e⁻	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Co ²⁺ + 2e ⁻	=	Со	- 0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18
Al ³⁺ + 3e ⁻	=	Al	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na⁺ + e⁻	=	Na	- 2,71
Ca ²⁺ + 2e⁻	=	Са	- 2,87
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ba²+ + 2e⁻	=	Ва	- 2,90
Cs⁺ + e⁻	=	Cs	- 2,92
K⁺ + e⁻	=	K	- 2,93
Li⁺ + e⁻	=	Li	- 3,05

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

SA EXAM PAPERS

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/H	lalfrea	nksies	E [⊕] (V)		
Li ⁺ + e ⁻	=	Li	- 3,05		
K⁺ + e⁻	=	K	- 2,93		
Cs⁺ + e⁻	=	Cs	- 2,92		
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90		
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89		
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87		
Na⁺ + e⁻	=	Na	- 2,71		
Mg ²⁺ + 2e ⁻	1	Mg	- 2,36		
Aℓ³+ + 3e-	1	Αℓ	- 1,66		
Mn ²⁺ + 2e ⁻	1	Mn	- 1,18		
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91		
2H ₂ O + 2e⁻	1	H ₂ (g) + 2OH ⁻	- 0,83		
Zn ²⁺ + 2e ⁻	#	Zn	- 0,76		
Cr³+ + 3e⁻	#	Cr	- 0,74		
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44		
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41		
Cd ²⁺ + 2e ⁻	#	Cd	- 0,40		
Co ²⁺ + 2e ⁻	=	Со	- 0,28		
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27		
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14		
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13		
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06		
2H ⁺ + 2e ⁻	=	H ₂ (g)	0,00		
S + 2H+ + 2e-	=	H ₂ S(g)	+ 0,14		
Sn⁴+ + 2e⁻	=	Sn ²⁺	+ 0,15		
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16		
SO ₄ ⁻ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17		
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34		
2H ₂ O + O ₂ + 4e ⁻	=	40H-	+ 0,40		
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45		
Cu⁺ + e⁻	=	Cu	+ 0,52		
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54		
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68		
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77		
NO ₃ -+ 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80		
Ag+ + e-	=	Ag	+ 0,80		
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85		
NO ₃ - + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96		
$Br_2(\ell) + 2e^{-\ell}$	=	2Br ⁻	+ 1,07		
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20		
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23		
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23		
Cr ₂ O ₇ -+ 14H ⁺ +6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33		
$C\ell_2(g) + 2e^{-}$	+	2Cl ⁻	+ 1,36		
MnO ₄ ⁻ + 8H ⁺ + 5e ⁻	`	Mn ²⁺ + 4H ₂ O	+ 1,51		
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77		
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81		
F ₂ (g) + 2e ⁻	+	2F-	+ 2,87		
1 2(9) 1 2 6		<u></u>	. 2,01		

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels