

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

education MPUMALANGA PROVINCE **REPUBLIC OF SOUTH AFRICA**

FURTHER EDUCATION AND TRAINING

NKANGALA DISTRICT/ DISTRIK

GRADE/ GRAAD 12

PHYSICAL SCIENCES

MARCH 2025

CONTROLLED TEST

MEMO

MARKS/ PUNTE:100

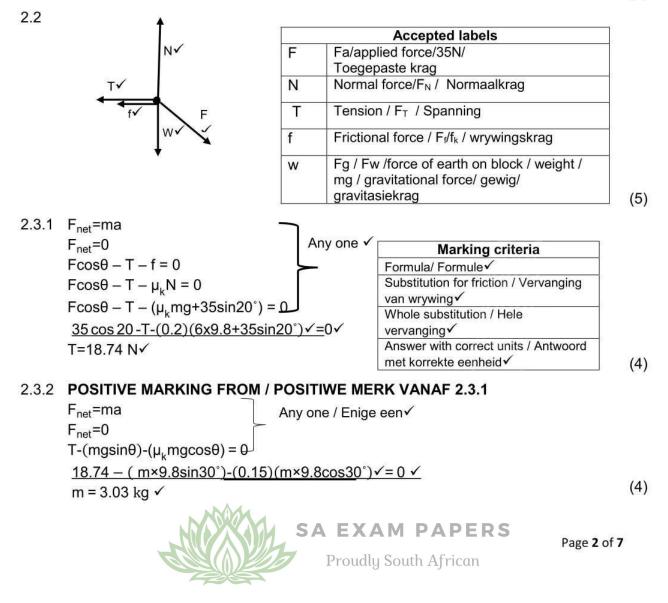
TIME/ TYD :2 HOURS/ URE

This marking guideline paper consists 9 of pages Hierdie nasienriglyn bestaan uit 9 bladsye

SA EXAM PAPERS

Page 1 of 7

QUES FION//VRAAGRS | This past paper was downloaded from saexampapers.co.za


1.1	A	(2)
1.2	D√ ✓	(2)
1.3	$D\checkmark\checkmark$	(2)
1.4	B√✓	(2)
1.5	A√✓	(2)
1.6	C√√	(2)
		[12]

QUESTION/ VRAAG 2

2.1 When <u>a net force acts on an object</u>, the object will accelerate in the direction of the force and <u>the acceleration is directly proportional to the force</u> and <u>inversely</u> <u>proportional to the mass of the object</u>

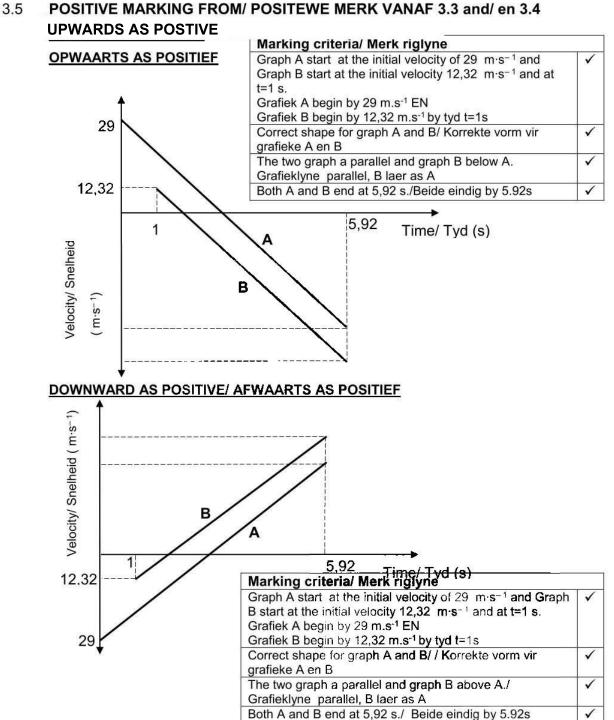
Wanneer 'n <u>resulterende/netto</u> <u>krag</u> op 'n voorwerp inwerk</u>, versnel die voorwerp in die rigting van die krag teen <u>'n versnelling direk eweredig aan die krag</u> en omgekeerd eweredig aan die massa van die voorwerp. $\checkmark\checkmark$

(2)

(2)

QUESTION/ VRAAG 3

3.1 Motion under the influence of the gravitational force/weight ONLY Vryval is die beweging waartydens die ENIGSTE krag wat op 'n voorwerp inwerk, die gravitasiekrag is.√√


OPTION/ OPSIE 1	OPTION/ OPSIE 2
UPWARD AS POSITIVE/ OPWAARTS	DOWNWARD AS POSITIVE/
POSITIEF	AFWAARTS AS POSITIEF
	v _f ²=v _i ²+2a∆y ✓
v _f ²=v _i ²+2a∆y ✓	<u>29²=0²+ 2(9,8)∆y</u> √
<u>0²=29²+ 2(-9,8)∆y</u> ✓	∆y= 42,91m ✓
∆y= 42,91m ✓	
	UPWARD AS POSITIVE/ OPWAARTS
DOWNWARD AS POSITIVE/	POSITIEF
AFWAARTS AS POSITIEF	v _f ²=v _i ²+2a∆y ✓
v _f ²=v _i ²+2a∆y ✓	<u>(-29)²=0²+ 2(-9,8)∆y</u> ✓
0 ² =(-29) ² + 2(9,8)∆y√	∆y= 42,91m ✓
∆y= 42,91m ✓	
OPTION/ OPSIE 1	OPTION/ OPSIE 2
UPWARD AS POSITIVE/ OPWAARTS	UPWARD AS POSITIVE/ OPWAARTS POSITIEF
POSITIEF	v _f =v _i +a∆t✓
v _f =v _i +a∆t∕	0 = 29 + (-9.8)∆t ✓
$-29\checkmark = 29 + (-9.8)\Delta t$	$\Delta t = 2.96 \text{ s}$
∆t = 5,92 s ✓	∆t = 2× 2,96 ✓ = 5,92 s ✓
DOWNWARD AS POSITIVE/	DOWNWARD AS POSITIVE/ AFWAARTS AS POSITIEF
AFWAARTS AS POSITIEF	$v_f = v_i + a\Delta t \checkmark$
v _f =v _i +a∆t∕	$29 \checkmark = -29 + (-9.8) \Delta t \checkmark$
29 √= <u>-29 + (9.8)∆t</u> √	$\Delta t = 5.92 \text{ s} \checkmark$
∆t = 5,92 s ✓	

3.4 **POSITIVE MARKING FROM/ POSITIEWE MERK VANAF 3.3**

UPWARD AS POSITIVE/ OPWAARTS POSITIEF	DOWNWARD AS POSITIVE/ AFWAARTS AS POSITIEF	
$\Delta y = vi\Delta t + \frac{1}{2} a\Delta t^2 \checkmark$	$\Delta y = v i \Delta t + \frac{1}{2} a \Delta t^2 \checkmark$	
$-58 \checkmark = v_i(5,92-1) + \frac{1}{2}(-9,8)(5,92-1)^2 \checkmark$	$58\checkmark = \frac{v_i(5,92-1) + \frac{1}{2}(9,8)(5,92-1)^2}{2}\checkmark$	
$v_i=12,32 \text{ m}\cdot\text{s}^{-1}$	vi=12,32 m·s ⁻¹ √ ²	

SA EXAM PAPERS | This past paper was downloaded from saexampapers.co.za

QUES BOAMVRAAGRS | This past paper was downloaded from saexampapers.co.za

In an isolated system the total mechanical energy is conserved/remains constant. 4.1 Die totale meganiese energie (som van gravitasie- potensiële energie en kinetiese energie) in 'n geslote sisteem bly konstant.

4.2
$$\sum (mg + \frac{1}{2}mv^{2})_{i} = \sum (mg + \frac{1}{2}mv^{2})_{f}$$
$$0 + \frac{1}{2}\times 1, 2\times v_{i}^{2}\checkmark = 1, 2\times 0, 65 + 0\checkmark$$
$$v_{i} = 3,57 \text{ m} \cdot \text{s}^{-1}\checkmark$$
(4)

4.3 In an isolated system the total linear momentum is conserved/remains constant. Die totale lineêre momentum in 'n geïsoleerde sisteem bly konstant (behoue). ✓✓ (2)

4.4 **POSITIVE MARKING FROM/ POSITIEWEE MERK VANAF 4.2**

$$\sum_{i=1}^{n} p_{i} = \sum_{i=1}^{n} p_{f}$$
Any one/ Enige een \checkmark

$$0,4 \times v_{b} \checkmark +0 = 0,4 \times (-0,36) + 1,2 \times 3,57 \checkmark$$

$$v_{b} = 10,35 \text{ m} \cdot \text{s}^{-1} \checkmark$$

(4)

[12]

(2)

QUESTION/ VRAAG 5

- 5.1 A bond or an atom or a group of atoms that determine(s) the (physical and chemical) properties of a group of organic compounds Funksionele groep: 'n Binding of 'n atoom of 'n groep atome wat die fisiese en chemiese eienskappe van 'n groep organiese verbindings bepaal 🗸
- (2)5.2.1 A√ & C√ (2)5.2.2 Ketone / Ketoon√ (1) Marking criteria 5.2.3 4-bromo-3,3-dimethlyhexane Correct stem i.e <u>hexane/ Korrekte stamnaam</u> ✓ • All substituents (bromo and dimethyl) correctly 4-bromo-3,3-dimetielheksaan identified./ Alle substituente (bromo en dimetiel) korrek geidentifiseerd 🗸 Correct IUPAC name / Korrekte IUPAC naam. ✓ (3)5.2.4 C_nH_{2n}√ (1)5.2.5 Pent-2-ene/ Pent-2-een√√ (2)

Proudly South African

- 5.3.1 Compound with the same molecular tormula but different functional groups Organiese molekule met dieselfde molekulêre formule, maar verskillende funksionele groepe </
- 5.3.2 Carbonyl/ Karboniel√
- 5.3.3 ннн H-C-C-C-C ĤНĤ

Butanal ✓

- Marking criteria / Nasienriglyn
- Correct functional group/ Korrekte funksionele groep √ Whole structure. Hele struktuur ✓
- Correct IUPAC name/ Korrekte IUPAC ✓

(3)[17]

(2)

(1)

(4)

(2)

(1)

QUESTION/ VRAAG 6

- 6.1 Temperature at which the vapour pressure equals atmospheric pressure. $1/\sqrt{2}$ Die temperatuur waarby die dampdruk van die stof gelyk is aan atmosferiese druk. (2)
- 6.2 What is the relationship between chain length/ surface area/ molecular mass and boiling point of organic compound ? Wat is die verband tussen kettinglengte/ oppervlakte/ molekulêre massa en

kookpunt van organiese verbinding? ✓✓

Marking criteria/ Merk riglyne

- Must be a question/ Moet 'n vraag wees (?)
- Dependent variable / Afhanklike veranderlike
- Independent variable / Onafhanklike veranderlike
- 6.3 Chain length / surface area/ molecular mass increases from A-C. Kettinglengte /oppervlakte/ molekulêre massa neem toe vanaf A-C ✓
 - The strength of London forces/ intermolecular forces increases from A-C. Die sterkte van Londen-kragte/ intermolekulêre kragte neem toe vanaf A-C ✓
 - More energy needed to overcome intermolecular forces. Meer energie word benodig om intermolekulêre kragte te oorkom ✓ (3)
- 6.5.2 Compound/ Verbinding C ✓
- 6.5.3 Between molecules of C/ alcohol has hydrogen bonds with one site of bonding Tussen molekules van C/ alkohol is daar waterstofbindings met een plek van binding ✓
 - Between molecules of propanoic acid/ carboxylic acids has hydrogen bonds with two sites of bonding ✓

Proudly South African

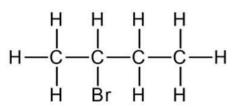
Page 6 of 7

 Intermolecular forces in propanoic acid/carboxylic acids are stronger than in compoundC /alcohol

Die Intermolekulêre kragte in propaansuur/karboksielsure is sterker as in verbinding C/ alkohol 🗸

. More energy is needed to overcome intermolecular forces in carboxylic acids/propanoic acid than alcohol/ compound C.

Meer energie is nodig om intermolekulêre kragte in karboksielsure/ propaansuur te oorkom as alkohol/ verbinding C 🗸


[12]

(2)

QUESTION/ VRAAG 7

7.1.1 The chemical process/reaction in which longer chain hydrocarbon/alkane molecules are broken down to shorter (more useful) molecules. Die chemiese proses waarin langer kettingkoolwaterstof-molekule afgebreek word in korter, meer bruikbare, molekules VV

- 7.1.2 C₆H₁₄ ✓ (1) 7.1.3 $2C_6H_{14}\checkmark + 19O_2 \rightarrow 14H_2O + 12CO_2\checkmark$ Balancing / Balansering ⁄ (3)7.2.1 Addition/Addisie (Hydrohalogination/ Hidrohalogenasie)√ (1)
- 7.2.2

Marking criteria/ Merk riglyne

- Correct functional group/ Korrekte funksionele groep √
- Whole structure./ Hele struktuur ✓

			(2)
7.2.3	Substitution/ Substitusie (Hydrolysis)√		(1)
7.2.4	HBr√		(1)
7.2.5	Esterification/ Esterifikasie ✓		(1)
7.2.6	Concentrated Sulphuric acid / Gekonsentreerde Swaelsuur 🗸		(1)
7.2.7	Butyl ethanoate / Butieletanoaat√√		(2)
			[15]
	TOTAL/ TOTAL:	100	

