

You have Downloaded, yet Another Great Resource to assist you with your Studies ③

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

JUNE EXAMINATION GRADE 12

2025

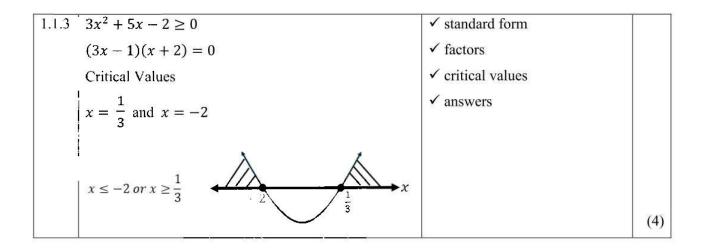
MARKING GUIDELINES

MATHEMATHICS (MATHS)

PAPER 1

22 pages

(PAPER 1) GR12 0625


GENERAL NOTES

- 1. Consistent accuracy applies in this marking guideline.
- 2. If a learner answers the same question twice, but does not cancel one of the answers, **ONLY** consider the first attempt.
- 3. If a learner cancels the answer but does not make a second attempt, consider the cancelled attempt.
- 4. If a learner provided an answer not mentioned in this memorandum, first check/prove it before disqualifying their attempt. Please check through all **OPTIONS** provided in this marking guideline.

QUES	STION 1	-	
1.1.1	x(x+4) = 0	✓ factors	0
	$x = 0 \ or \ x = -4$ ANSWEI	R ONLY $\frac{1}{2}$ \checkmark both answers values of x	(2)
1.1.2	$2x^{2} - 3x - \frac{1}{2} = 0$ $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(2)(-\frac{1}{2})^{2}}}{2(2)}$	$\checkmark \text{ standard form}$ $\checkmark \text{ substitution}$ $\checkmark 1,65$ $\checkmark -0,15$	
	$x = \frac{3 \pm \sqrt{13}}{4}$ x = 1,65 or x = -0,15		
	$OR 4x^2 - 6x - 1 = 0$		
	$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(4)(-1)^2}}{2(4)}$	<u>D</u>	
	$x = \frac{6 \pm \sqrt{52}}{8}$		
	x = 1,65 or x = -0,15 ANS	SWER ONLY $\frac{2}{4}$	
	Penalize 1 mark for rounding		(4)

(PAPER 1)

111				<u> </u>
1.1.4	$2^{2x} + 2^x - 6 = 0$		✓ factors	
	Let $k = 2^x$		✓ rejection	
	$k^2 + k - 6 = 0$		✓ answer	
	(k+3)(k-2) = 0			
	$k \neq -3$ or $k = 2$			
	$2^{x} = 2$			
	x = 1			
	OR/OF	ANSWER ONLY $\frac{1}{3}$	OR/OF	
	(2x + 2)(2x - 2) = 0	3	✓ factors	
	$(2^x + 3)(2^x - 2) = 0$		✓ rejection	
	$2^x \neq -3 \text{ or } 2^x = 2$		✓ answer	(3)
	<i>x</i> = 1			
	$x^2 - 2x + 3 + \frac{2}{x^2 - 2x} = 0$		✓ k-method	
1.1.5	$x^2 - 2x$ $k = x^2 - 2x$		✓ factors	
	$k+3+\frac{2}{k}=0$		✓ discriminant	
	16		✓ answer	
	k(k+3) + 2 = 0			
	$k^{2} + 3k + 2 = 0$ (k + 1)(k + 2) = 0			
	(k + 1)(k + 2) = 0 k = -2 or $k = -1$			
	$x^2 - 2x = -1$			
	$x^2 - 2x + 1 = 0$			
	$(x-1)^2 = 0$			
	x = 1			
	$x^2 - 2x + 2 = 0$			
	$\Delta = b^2 - 4ac$			
	$= (-2)^2 - 4(1)(2)$			
	$\Delta = -4$ (Discriminant < 0)			
				(4)

(PAPER 1)

GR12 0625

	T	r i	
1.1.6	$(\sqrt{x+5})^2 = (x-1)^2$	✓ squiring both sides	
	$x + 5 = x^2 - 2x + 1$	✓ squiring both sides	
	$x^2 - 3x - 4 = 0$	✓ factors	
	(x-4)(x+1)=0	✓ answer/selection	
	$x \neq -1$ or $x = 4$		(4)
1.0			
1.2	$x + 2y = 5$ And $2y^2 - xy - 4x^2 = 8$	$\checkmark x = 5 - 2y$ equation 3	
	From equation 1	✓ substitution of equation	
	$x = 5 - 2y \dots \dots (3)$	3 into Equation 2	
	Substitute (3) into (2)	✓ standard form	
	$2y^2 - xy - 4x^2 = 8$	✓ factors	
	$2y^2 - y(5 - 2y) - 4(5 - 2y)^2 - 8 = 0$	\checkmark both <i>y</i> -values	
	$2y^2 - 5y + 2y^2 - 100 + 80y - 16y^2 - 8 = 0$	\checkmark Both x-values	
	$-12y^2 + 75y - 108 = 0$		
	$\frac{-12y^2}{-3} + \frac{75y}{-3} \frac{-108}{-3} = 0$		
	$4y^2 - 25y + 36 = 0$		
	(4y - 9)(y - 4) = 0		
	$y = \frac{9}{4} \text{or} y = 4$		
	When $y = \frac{9}{4}$		
	x = 5 - 2y		
	$x = 5 - 2(\frac{9}{4})$		
	$x=\frac{1}{2}$		
	When $y = 4$		
	x = 5 - 2y		
	x = 5 - 2(4)		
	x = -3		(6)
	SA EXAM Proudly Source		

1.3 $6x^{2} - 4kx + 6 = 0$ $\Delta = b^{2} - 4ac$ $\Delta = (-4k)^{2} - (4)(6)(6)$ $= 16k^{2} - 144$ $16k^{2} - 144 = 0$	 ✓ correct use a formula of ∆ ✓ simplification ✓ answers (only k = 3 this mark is not awarded)
$\begin{vmatrix} \frac{16k^2}{16} = \frac{144}{16} \\ k^2 = 9 \\ k = \pm\sqrt{9} \\ k = \pm 3 \end{vmatrix}$	
Therefore, the values of k for which the read equal are as follows: k = 3 or k = -3	oots are real (3)
	[30]

16;23	✓ 16 ✓ 23	TURNER
		(2)
	. 25	
$S_n = \frac{n}{2} [2a + (n-1)d]$	\checkmark substitution for a	
	✓ substitution for d	
$S_n = \frac{n}{2} [2(-5) + (n-1)7]$	\checkmark simplification	
$S_n = \frac{n}{2}(-10 + 7n - 7)$		
$S_n = \frac{n}{2}(7n - 17)$		(3
	/ m + 1°00	
x = 3x - 5 = 4x - 3 = 5x + 1	1	
\bigvee \bigvee \bigvee	✓ second difference ✓ 5	
$2x-5 \qquad x+2 \qquad x+4$		
\bigvee		
-x + 7 2		
-x + 7 = 2		
$\therefore x = 5$		(3
2a = 2 $3(1) + b = 5$	$\sqrt{a} = 1$	
	15	
	✓ explanation	
$= n^2 + 2n + 1 + 1$		
$= (n+1)^2 + 1$		
Conclusion:		
$(n + 1)^2$ is always positive for all $n \ge 1$ and adding 1 will make the result remain positive.		(5
	$S_{n} = \frac{n}{2}(-10 + 7n - 7)$ $S_{n} = \frac{n}{2}(7n - 17)$ $x 3x - 5 4x - 3 5x + 1$ $2x - 5 x + 2 x + 4$ $x + 7 2$ $-x + 7 = 2$ $x = 5$ $2a = 2 3(1) + b = 5$ $a = 1 b = 5 - 3 = 2$ $1 + 2 + c = 5$ $c = 5 - 3 = 2$ $T_{n} = n^{2} + 2n + 2$ $= n^{2} + 2n + 1 + 1$ $= (n + 1)^{2} + 1$ Conclusion: $(n + 1)^{2} \text{ is always positive for all } n \ge 1 \text{ and adding } 1$ will make the result remain positive.	$S_{n} = \frac{n}{2}(-10 + 7n - 7)$ $S_{n} = \frac{n}{2}(7n - 17)$ x 3x - 5 4x - 3 5x + 1 x 3x - 5 4x - 3 5x + 1 x 3x - 5 4x - 3 5x + 1 x 4x - 3 5x + 1 x 5 second difference x 5 second difference x 5 second difference x 5 s 2x - 5 x + 2 x + 4 y 6 first difference x 5 second difference x 5 s 2x - 5 x + 2 x + 4 y 6 first difference x 6 s x 2x - 5 x + 2 x + 4 y 7 second difference x 5 s 2x - 5 x + 2 x + 4 y 6 second difference x 5 s 2x - 5 x + 2 x + 4 y 6 second difference x 6 s x 6 s 2x - 5 x + 2 x + 4 y 6 second difference x 6 s x 6 s x 6 s x 7 s x 6 s x 6 s x 6 s x 6 s x 7 s x 8 second difference x 6 s x 8 second difference x 9 second difference

(PAPER 1)

$OR \\ 2a = 2$	3(1) + b = 5	$\checkmark a = 1$ $\checkmark b = 2$
	$\therefore b = 5 - 3 = 2$	✓ c = 2
1 + 2 + c = 5		$\checkmark n \in N$
$\therefore c = 5 - 3 = 2$		✓ explanation
$T_n = n^2 + 2n + 2$		
$n \in N$ therefor T_n will	be positive for all n values	$\checkmark a = 1$
OR $2a = 2$	3(1) + b = 5	✓ b = 2
	b = 5 - 3 = 2	✓ c = 2
1 + 2 + c = 5 $\therefore c = 5 - 3 = 2$ $T_n = n^2 + 2n + 2$		✓ ✓ Graphical explanation
All term will be positiv	ve for all values of n	

For convergence: $-1 < r < 1; r \neq 0$ $-1 < \frac{3(p-3)}{2} < 1$ -2 < 3(p-3) < 2 -2 < 3p - 9 < 2 7 < 3p < 11 $\frac{7}{3}$	convergence formula \checkmark simplification $\checkmark \frac{7}{3}$	(4)
$S_{\infty} = \frac{a}{1-r}$ $1 = \frac{\frac{1}{2}(p-3)}{1-(\frac{3(p-3)}{2})}$ $\left(1 - \frac{3p-9}{2}\right) = \frac{1}{2}(p-3)$ $\frac{11-3p}{2} = \frac{p-3}{2}$ $4p = 14$ $p = \frac{14}{4} = \frac{7}{2}$	 ✓ substitution into the correct formula ✓ simplification ✓ ⁷/₂ 	(3)

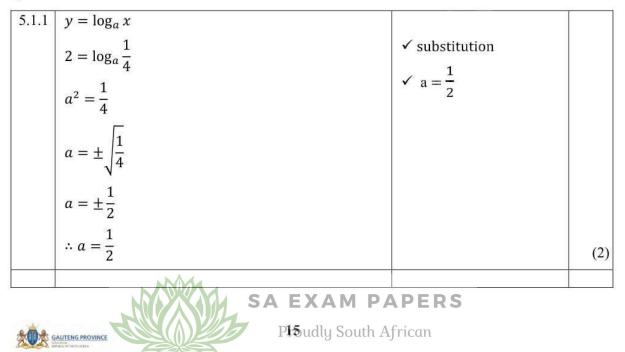
QUESTI	ON 3		
k=6	$2(3^{k-1}) = 59\ 046.$ + 18 + 54 + \dots + 2(3^{n-1}) = 59\ 046 = $\frac{18}{6} = 3$	✓ $r = 3$ ✓ $n - 1$ ✓ substitution ✓ simplification to $3^{n-1} = 19\ 683$	
S_n	6 umber of terms $(n-2) + 1 = n - 1$ $a = \frac{a(r^n - 1)}{r - 1}; r \neq 1$ $a = \frac{6(3^{n-1} - 1)}{3 - 1}$ $\frac{(3^{n-1} - 1)}{3 - 1} = 59\ 046$	√ 10	
$3(3^{n})$ 3^{n} 3^{n} n	$(3^{n-1} - 1) = 59\ 046$ $a^{n-1} - 1 = 19\ 682$ $a^{n-1} = 19\ 683$ $a^{n-1} = 3^9$ -1 = 9		
$\begin{vmatrix} O \\ \sum_{k=0}^{n} \\ 6 \\ r \\ N \\ N \\ 1 \\ N \\ $	$2(3^{k-1}) = 59\ 046.$ + 18 + 54 + + 2(3 ⁿ⁻¹) = 59\ 046 = $\frac{18}{6} = 3$ umber of terms $(n-2) + 1 = n - 1$	OR $\checkmark r = 3$ $\checkmark n - 1$ \checkmark substitution \checkmark simplification to $3^k = 19\ 683$	
S_n S_k	et the number of terms be k $a = \frac{a(r^{n} - 1)}{r - 1}; r \neq 1$ $a = \frac{6(3^{k} - 1)}{3 - 1}$ $(3^{k} - 1) = 59\ 046$	✓ 10	
$3(3^k)$ 3^k 3^k k		If $k = 9 \max \frac{4}{5}$	(5)

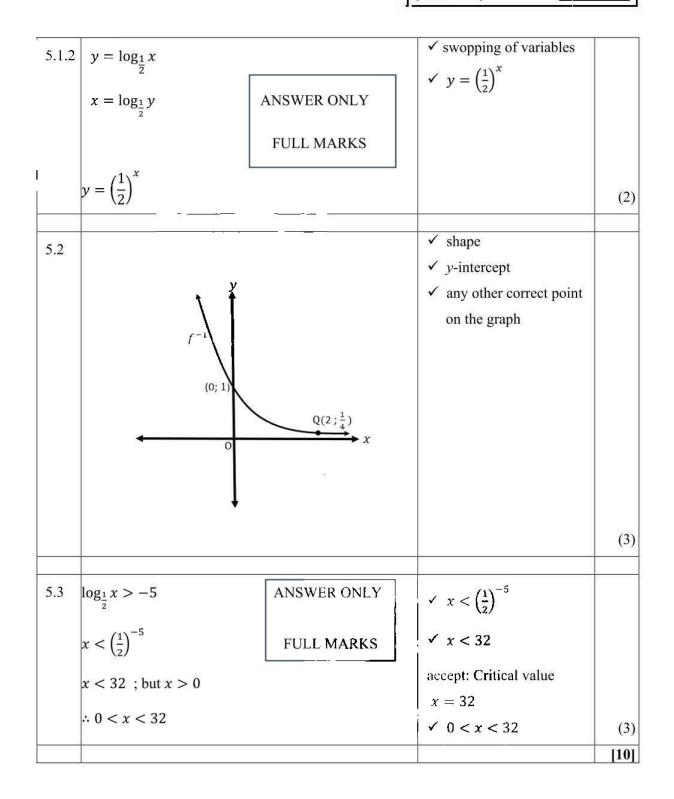
3.2.1	6p	✓ бр	(1)
3.2.2	Pythagoras' Theorem $h^{2} = (12p)^{2} - (6p)^{2}$ $h^{2} = 144p^{2} - 36p^{2}$ $h^{2} = 108p^{2}$	 ✓ Pythagoras' Theorem ✓ 6√3p 	(2)
	h = 100p $h = 6\sqrt{3}p \text{ units}$ OR $\sin 60^\circ = \frac{h}{12p}$		OR
	$h = 12p.\frac{\sqrt{3}}{2}$	✓ trig ratio ✓ $6\sqrt{3}p$	(2)
	$\therefore h = 6\sqrt{3}p \text{ units}$		
3.2.3	Area of the first triangle $=\frac{1}{2}(12p)(6\sqrt{3}p) = 36\sqrt{3}p^2$ Area of the second triangle $=\frac{1}{2}(6p)(3\sqrt{3}p) = 9\sqrt{3}p^2$ Area of the third triangle $=\frac{1}{2}(3p).\frac{1}{2}(3\sqrt{3}p) = \frac{9\sqrt{3}p^2}{4}$ $\frac{9\sqrt{3}p^2}{4}$ $36\sqrt{3}p^2 + 9\sqrt{3}p^2 + \frac{9\sqrt{3}p^2}{4}$ Geometric pattern $r = \frac{9\sqrt{3}p^2}{36\sqrt{3}p^2} = \frac{1}{4}$ $S_{\infty} = \frac{a}{1-r}; r \neq 1$ $S_{\infty} = \frac{36\sqrt{3}p^2}{1-\frac{1}{4}} = 48\sqrt{3}p^2$	✓ $36\sqrt{3}p^2$ ✓ $9\sqrt{3}p^2$ ✓ $\frac{9\sqrt{3}p^2}{4}$ ✓ $\frac{1}{4}$ ✓ substitution into correct formula	

	on	
OR Area of the first triangle = $\frac{1}{2}(12p)(6\sqrt{3}p) = 36\sqrt{3}p^2$ Ratio of corresponding sides of consecutive triangles= 1:2 Ratio of areas of consecutive triangles= 1:4 $\therefore r = \frac{1}{4}$ $S_{\infty} = \frac{1}{1-r}; r \neq 1$ $S_{\infty} = \frac{36\sqrt{3}p^2}{1-\frac{1}{4}} = 48\sqrt{3}p^2$	OR $\checkmark 36\sqrt{3}p^2$ $\checkmark 1:2$ $\checkmark 1:4$ $\checkmark \frac{1}{4}$ \checkmark substitution into correct formula	
OR Use area rule.	OR	
Area of the first triangle $=\frac{1}{2}(12p)(12p)\sin 60^{\circ}$ $= 36\sqrt{3}p^{2}$ Area of the second triangle $=\frac{1}{2}(6p)(6p)\sin 60^{\circ}$ $= 9\sqrt{3}p^{2}$ Area of the third triangle $=\frac{1}{2}(3p)(3p)\sin 60^{\circ}$ $=\frac{9\sqrt{3}p^{2}}{4}$	✓ $36\sqrt{3}p^2$ ✓ $9\sqrt{3}p^2$ ✓ $\frac{9\sqrt{3}p^2}{\frac{4}{4}}$ ✓ $\frac{1}{\frac{4}{4}}$ ✓ substitution into correct formula	
$36\sqrt{3}p^{2} + 9\sqrt{3}p^{2} + \frac{9\sqrt{3}p^{2}}{4} \dots$ Geometric pattern $r = \frac{9\sqrt{3}p^{2}}{36\sqrt{3}p^{2}} = \frac{1}{4}$ $S_{\infty} = \frac{a}{1-r}; r \neq 1$ $S_{\infty} = \frac{36\sqrt{3}p^{2}}{1-\frac{1}{4}} = 48\sqrt{3}p^{2}$		
$1-\overline{4}$		(5)
		[13]

(PAPER 1)

QUEST	FION 4		
4.1	$(0; \frac{15}{2})$ Penalize if NOT in coordinate form	$\checkmark (0;\frac{15}{2})$	
			(1)
4.2	$x^2 + 2x = 0$	✓ factorization	-
	x(x+2)=0	✓ C(-2;0)	
	x = 0 or $x = -2$		
	C(-2; 0) DO NOT penalize if not in		
	coordinate form		(2)
4.2.1		Cont approved	
4.3.1	$x = \frac{-b}{2a}$	$\checkmark p = -1$	
	$x = \frac{-2}{2(1)} = -1$		
	$x = \frac{1}{2(1)} = -1$		
	$\therefore p = -1$		
	OR		
	$P = \frac{0 + (-2)}{2} = -1$		
	OR		
	$g(x) = (x+1)^2 - 1$		
	x = -1		
	$\therefore p = -1$		(1)
4.3.2		$\checkmark y_E = -1$	
	$g(-1) = (-1)^2 + 2(-1) = -1$	√ 9	
	$y_E = -1$	20	
	: $DE = 8 - (-1) = 9$ units		(2)


4.4	$f(x) = a(x + p)^{2} + q$ $f(x) = a(x + 1)^{2} + 8$ Use F(0; $\frac{15}{2}$) $a(0 + 1)^{2} + 8 = \frac{15}{2}$ $a + 8 = \frac{15}{2}$ $\therefore a = -\frac{1}{2}$ $f(x) = -\frac{1}{2}(x + 1)^{2} + 8$ $f(x) = -\frac{1}{2}(x^{2} + 2x + 1) + 8$ $f(x) = -\frac{1}{2}x^{2} - x - \frac{1}{2} + 8$ $f(x) = -\frac{1}{2}x^{2} - x + \frac{15}{2}$	 ✓ substitution of p and q using point D(1;8) ✓ substitution of x and y using point F(0; 15/2) ✓ simplification leading to a = -1/2 ✓ simplification leading to b = -1 	
	$\therefore b = -1$		(4)


GR12 0625

4.5	$-\frac{1}{2}x^2 - x - \frac{15}{2} = x^2 + 2x$	\checkmark equating <i>f</i> and <i>g</i>
		\checkmark standard equation
	$\frac{3}{2}x^2 + 3x - \frac{15}{2} = 0$	\checkmark x-values
	$x^{2} + 2x - 5 = 0$	\checkmark y-values
	When a second watch the second s	$\checkmark y = 5$
	$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-5)}}{2(1)}$	
	$x = \frac{-2 \pm \sqrt{24}}{2}$	
	x = 1.45 or x = -3.45	
	$g(1.45) = (1.45)^2 + 2(1.45) = 5.00$	
	$g(-3.45) = (-3.45)^2 + 2(-3.45) = 5.00$	
	$\therefore y = 5$	
	OR	
	$f(1.45) = -\frac{1}{2}(1.45)^2 - 1.45 - \frac{15}{2} = 5.00$	
	$f(-3.45) = -\frac{1}{2}(-3.45)^2 - (-3.45) - \frac{15}{2} =$	
	5.00	
	$\therefore y = 5$	(5
		[15]

QUESTION 5

(PAPER 1)

GR12 0625

QUEST	FION 6		
6.1.1	y = -x + k	✓ substitution	
	-1 = -(-4) + k	$\checkmark k = -5$	
	-1 = 4 + k		
	k = -5		(2)
(10			
6.1.2	p = 4	$\checkmark p = 4$	
	q = -1	✓ q= -1	
	a	\checkmark substitution	
	$y = \frac{a}{x+4} - 1$	$\checkmark a = -4$	
	Use A (-8; 0)		
	$0 = \frac{a}{-8+4} - 1$		
	$0 = \frac{a}{-4} - 1$		
	$1 = \frac{a}{-4}$		
	$\therefore a = -4$		
	$f(x) = -\frac{-4}{x+4} - 1$		(4)
6.2	$-\frac{-4}{x+4} - 1 \ge -x - 5$	✓ inequality/ equate	
	λ T T	✓ simplification	
	-4	\checkmark critical values	
	$\left \frac{-4}{x+4} \ge -x-4\right $	$\checkmark -6 \le x < -4$	
	$(x+4)^2 \ge 4$	$\checkmark x \ge -2$	
	Critical values:		
	$(x+4)^2 = 4$		
	$x + 4 = \pm 2$		
	x = -2 and $x = -6$		
	$-6 \le x < -4$ or $x \ge -2$		(5)

SA EXAM PAPERS

6.3	$\frac{-4}{x+4} - 1 = x + t$ -4 - 1(x+4) = x(x+4) + t(x+4) $-4 - x - 4 = x^{2} + 4x + tx + 4t$ $x^{2} + (5+t)x + 8 + 4t = 0$ $b^{2} - 4ac = 0$ $(5+t)^{2} - 4(1)(8+4t) = 0$ $t^{2} + 10t + 25 - 32 - 16t = 0$ $t^{2} - 6t - 7 = 0$ (t-7)(t+1) = 0 t = 7 or t = -1	✓ Equating ✓ $x^2 + (5 + t)x + 8 + 4t = 0$ ✓ Substitution into discriminant ✓ $t^2 - 6t - 7 = 0$ ✓ Factors/ Method ✓ Values of t	(6)
		~	[17]

QUEST	ION 7		
7.1	$f(x) = \frac{3}{x}$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $= \lim_{h \to 0} \frac{\left(\frac{3}{x+h}\right) - \left(\frac{3}{x}\right)}{h}$ $= \lim_{h \to 0} \frac{\left(\frac{3x - 3(x+h)}{x(x+h)}\right)}{h}$ $= \lim_{h \to 0} \frac{\left(\frac{3x - 3x - 3h}{x(x+h)}\right)}{h}$ $= \lim_{h \to 0} \left[\frac{-3h}{x(x+h)} \times \frac{1}{h}\right]$ $= \lim_{h \to 0} \left[\frac{-3}{x(x+h)}\right]$	$\checkmark \left(\frac{3}{x+h}\right)$ $\checkmark \text{ simplification of numerator}$ $\text{to } -3h$ $\checkmark \text{ denominator } x(x+h)$ $\checkmark \frac{-3h}{x(x+h)} \times \frac{1}{h}$ $\checkmark \frac{-3}{x^2}$ ANSWER ONLY $\frac{0}{5}$ Penalize for notation 1 mark Only penalize notation in 7.1	
	$=\frac{-3}{x^2}$		(5)
7.2.1	$D_{x} \left[\frac{\sqrt[3]{x^{2}} - x^{-\frac{3}{2}}}{\sqrt{x}} \right]$ $D_{x} \left[\frac{x^{\frac{2}{3}} - x^{-\frac{3}{2}}}{x^{\frac{1}{2}}} \right]$ $D_{x} \left[x^{-\frac{1}{2}} \left(x^{\frac{2}{3}} - x^{-\frac{3}{2}} \right) \right]$ $D_{x} \left[x^{\frac{1}{6}} - x^{-2} \right]$ $\frac{1}{6} x^{-\frac{5}{6}} + 2 x^{-3}$	✓ changing both radicals to exponents. ✓ $x^{\frac{1}{6}} - x^{-2}$ ✓ $\frac{1}{6}x^{\frac{-5}{6}}$ ✓ $2x^{-3}$	
	6		(4)

7.2.2	$\frac{dy}{dx}$ if $xy - y = x^2 - 1$	(x^2-1)	
	dx dx	$\checkmark y = \frac{(x^2 - 1)}{(x - 1)}$	
	$y = \frac{(x^2 - 1)}{(x - 1)}$		
	$y = \frac{1}{(x-1)}$	$\checkmark y = x + 1$	
	$y = \frac{(x-1)(x+1)}{(x-1)}$	$\checkmark y = x + 1$	
		✓ 1	
	y = x + 1		
	$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = 1$		(3)
7.3.1	$f(x) = ax^3 + bx^2$	$\checkmark f'(x) = 3ax^2 + 2bx$	
/	The gradient of the tangent at $x = 1$ is 12.	$\checkmark 3a + 2b = 12$	
	$f'(x) = 3ax^2 + 2bx$	$\checkmark a+b=5$	
	$f'(1) = 3a(1)^2 + 2b(1)$	✓ Simplifying to $a = 2$	
	12 = 3a + 2b	Simplifying to $b = 3$	
	Use point (1; 5)	1 9 8	
	$5 = a(1)^2 + b(1)$		
	5 = a + b		
	Solving simultaneously:		
	$b = 6 - \frac{3a}{2}$ (1)		
	b = 5 - a(2)		
	$6 - \frac{3a}{2} = 5 - a$		
	10 - 2a = 12 - 3a		
	3a - 2a = 2		
	$\therefore a = 2$		
	$\Rightarrow b = 5 - 2 = 3$		(5)

7.3.2	$f(x) = 2x^3 + 3x^2$	$\checkmark f'(x)$
	$f'(x) = 6x^2 + 6x$	\checkmark equating to 0
	$6x^2 + 6x = 0$	✓ <i>x</i> -values
	$x^2 + x = 0$	✓ (0,0)
	x(x+1)=0	✓ (-1,1)
	$\therefore x = 0$ or $x = -1$	
	$f(0) = 2(0)^3 + 3(0)^2 = 0$	
	$f(-1) = 2(-1)^3 + 3(-1)^2 = 1$	
	The coordinates are $(0,0)$ and $(-1,1)$	(5)
		[22]

QUEST	QUESTION 8			
8.1.1	The graph has a local maximum when $x = 3$	✓ ✓ local maximum	(2)	
	OR	OR		
	The graph is concave down.	$\checkmark \checkmark$ concave down	(2)	
8.1.2	(3;0)	 ✓ intercepts ✓ turning points ✓ point of inflection ✓ Shape 		
	↓ ```		(4)	

8.1.3	<i>x</i> < 0	$\checkmark x < 0$	
	1 < x < 3	$\checkmark \checkmark 1 < x < 3$	(3)
8.2	$f(x) = a(x)(x-3)^2$	\checkmark substitution of (5; -40)	
	$-40 = a(5)(5-3)^2$	✓ -2	
	-40 = 20a	✓ 12	
	$\therefore a = -2$	✓ -18	
	$f(x) = -2(x)(x-3)^2$		
	$f(x) = -2x(x^2 - 6x + 9)$		
	$f(x) = -2x^3 + 12x^2 - 18x$		
	OR		
	$f(x) = px^3 + qx + rx$		
	$f'(x) = 3px^2 + 2qx + r$		
	At turning the point;		
	f'(x) = 0		
	$3px^2 + 2qx + r = 0$		
	$x^2 + \frac{2q}{3p}x + \frac{r}{3p} = 0$		

The graph has turning points at	OR
x = 1 and $x = 3$	✓ Substitution of (5; -40)
$\therefore a(x-1)(x-3)=0$	✓ -2
(x-1)(x-3)=0	✓ 12
$x^2 - 4x + 3 = 0$	✓ -18
$\Rightarrow \frac{2q}{3p} = -4$ q = -6p and $\frac{r}{3p} = 3$ r = 9p But f(5) = -40 $\therefore 125p + 25q + 5r = -40$ 125p + 25(-6p) + 5(9p) = -40 20p = -40 p = -2 q = -6(-2) = 12 r = 9(-2) = -18 $f(x) = -2x^3 + 12x^2 - 18x$ OR	OR ✓ method
$f'(x) = 3px^2 + 2qx + r$	✓ -2
f'(1) = 3p + 2q + r	✓ 12
3p + 2q + r = 0Equation 1	✓ -18
f'(3) = 27p + 6q + r	
27p + 6q + r = 0Equation 2	
f(5) = -40	
$\therefore 125p + 25q + 5r = -40$	
25p + 5q + r = -8Equation 3	
From the three equations, eliminate r to get	
22p + 3q = -8 and $2p + q = 8$	

q = 8 - 2p	
22p + 3(8 - 2p) = -8	
22p + 24 - 6p = -8	
16p = -32	
p = -2	
q = 8 - 2(-2) = 12	
3p + 2q + r = 0	
3(-2) + 2(12) + r = 0	
18 + r = 0	
 r = -18	(4)
	[13]

9.1.	V = lbh	✓ substitution	
	$2\ 160\ 000 = x^2h$	2 160 000	
	2 160 000	$\sqrt{\frac{x^2}{x^2}}$	
	$\therefore h = \frac{2160000}{x^2}$		(2)
9.2	Surface area = $3x^2 + x^2 + 4xh$	$\checkmark 4x^2$	
	$=4x^{2}+4x\left(\frac{2\ 160\ 000}{x^{2}}\right)$	• 42	
	$=4x+4x\left(\frac{-x^2}{x^2}\right)$	$\checkmark 4xh$	
	$A(x) = 4x^2 + \frac{8\ 640\ 000}{x}$	\checkmark substitution of <i>h</i>	(3)
			(5)
9.3	$A(x) = 4x^2 + 8\ 640\ 000x^{-1}$	$\checkmark 8x - 8640\ 000x^{-2}$	
	$A'(x) = 8x - 8\ 640\ 000x^{-2}$	\checkmark equating $A'(x)$ to 0.	
	$= 8x - \frac{8640000}{r^2}$	\checkmark simplification	
	S'(x) = 0	✓ 102,6 <i>cm</i>	
		✓205,19 <i>cm</i>	
	$8x - \frac{8640000}{x^2} = 0$		
	$8x^3 = 8\ 640\ 000$		
	$x^3 = 1\ 080\ 000$		
	$x = \sqrt[3]{1\ 080\ 000} = 102,6cm$		
	$\therefore h = \frac{2\ 160\ 000}{(102.6)^2} = 205,19cm$		
	$(102.6)^2 = 200,130m$		(5)
			[10]

