

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

JUNE EXAMINATION

2025

.

MARKS: 150

TIME: 3 hours

This question paper consists of 12 pages and an information sheet.

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 11 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, etc. which you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round off answers correct to TWO decimal places, unless stated otherwise.
- 8. Write neatly and legibly.

QUESTION 1

1.1 Solve for x:

1.1.1
$$(x+3)(2-5x)=0$$
 (2)

1.1.2
$$7x^2 + 5x - 8 = 0$$
 (correct to TWO decimal places) (3)

1.1.3
$$\frac{7}{x^2 - 2x - 8} > 0 \tag{4}$$

$$3^{x+2} = 42 - 5.3^x \tag{3}$$

1.1.5
$$x - \sqrt{5x - 1} = 5$$
 (5)

1.2 Solve for x and y simultaneously:

$$x - y = 3$$

$$x^{2} - xy = 2y^{2} + 7$$
(6)

1.3 Prove that the roots of $2x^2 + px - p^2 = 0$ are rational for all rational values of p. (3) [26]

QUESTION 2

- 2.1 Given the arithmetic series: $6 + 1 4 9 \dots$
 - 2.1.1 Write down the value of the next term of the arithmetic series. (1)

2.1.2 Calculate:
$$6 + 1 - 4 - 9 \dots -239$$
 (5)

2.2 Consider a quadratic pattern: -9: -5; x: 15; ...

2.2.1 Calculate the value of
$$x$$
. (3)

- 2.2.2 If the value of x = 3, determine the n^{th} term of the number pattern. (4)
- 2.2.3 Explain why all the terms of this quadratic pattern are odd numbers. (2) [15]

QUESTION 3

- 3.1 Given: $\sum_{k=1}^{\infty} 4.p^{1-k} = 6$
 - 3.1.1 Calculate the value of p. (4)
 - 3.1.2 Hence, write down the first three terms of the series. (1)
- 3.2 On a particular day, a grade 12 learner from Dinaledi High School watched a video about number patterns on YouTube.
 - At 1 p.m. he shared the link for the video with 5 of his friends.
 - At 2 p.m. each of these 5 friends shared the link with 5 other friends.
 - Then at 3 p.m., each of those 5 friends shared it again with 5 different people.

If this pattern continues in the same way:

- 3.2.1 Determine how many people will receive the link at exactly 4 p.m. (2)
- 3.2.2 Determine the total number of people who would have received the link by 11 p.m. (3)

[10]

The sketch below shows the graph of $h(x) = \frac{-9}{x+4} + 3$. The asymptotes of h intersect at A. The graph h intersects the x-axis and y-axis at B and C respectively.

- 4.1 Write down the coordinates of A. (1)
- 4.2 Calculate the coordinates of B. (2)
- 4.3 Calculate the coordinates of C. (2)
- 4.4 Describe the translation from h to $j(x) = \frac{-9}{x}$. (2)
- Determine the coordinates of the points on j that are closest to the origin. (4)

[11]

The diagram below shows the graphs of $f(x) = a^x$, for $x \in [-1; 2]$, and $g(x) = bx^2$. $S\left(-\frac{1}{2}; \frac{1}{2}\right)$ is a point of intersection of f and g.

- 5.1 Determine the values of a and b. (4)
- 5.2 Draw a sketch graph of the inverse of g. Indicate the coordinates of one point on the graph. (2)
- 5.3 Is the inverse of g a function? (1)
- Determine the equation of f^{-1} in the form of $y = \dots$ Also state the restriction on the domain. (4)
- 5.5 If x < 0, write down the values of x for which f(x) > g(x). (2)

[13]

The graphs of $f(x) = x^2 + 5x - 6$ and g(x) = mx + c are drawn below. A and B are the x-intercepts of f and C, the y-intercept. g passes through A and C.

- 6.1 Calculate the coordinates of A and B. (3)
- 6.2 Determine the equation of g. (3)
- 6.3 If h(x) = f(x) + k, determine the values of k for which g and h will not intersect. (5)

[11]

QUESTION 7

- 7.1 Nelisiwe received her yearly bonus and decided to invest the full amount.
 - Bank A offers an interest rate of 8,5% p.a., compounded half-yearly.
 - Bank B also offers an interest rate of 8,5% p.a., but compounded monthly.
 - 7.1.1 With which bank should she invest? Give a reason for your answer. (2)
 - 7.1.2 Convert 8,5% p.a. compounded monthly to an effective interest rate. (3)
- 7.2 Calculate the price at which Bongiwe bought her car if its depreciated value after three years is R230 476,05. Depreciation is calculated at a rate of 13% p.a., using the reducing balance method. (2)

7.3 Andries deposited R x into a savings account with an interest rate of 8,7% p.a. compounded quarterly.

- 3½ years after the initial deposit, the interest rate charged changed to 9,2% p.a., compounded monthly.
- 4 years after the initial deposit, he withdrew R1 750.
- His pay-out amount after 6 years of investment is R8 944,97.

[12]

QUESTION 8

8.1 Given: $f(x) = -7x^2 - 3$

8.1.1 Determine
$$f'(x)$$
 from first principles. (5)

8.1.2 Calculate the gradient of the tangent to
$$f$$
 at $x = -\frac{1}{2}$. (2)

8.2 Determine:

8.2.1
$$\frac{dy}{dx}$$
 if $y = 3x(x^2 - 2)$ (3)

$$8.2.2 D\left[\frac{\sqrt[3]{x^2} - 8x}{x}\right] (3)$$

[13]

The diagram below shows the graph of $f(x) = x^3 + px^2 + qx + 30$.

A, B(2;0) and C are the x-intercepts of f, and P(-1;36) and T are the turning points. R is the point of inflection.

9.1 Show that
$$p = -4$$
 and $q = -11$. (5)

9.5 For which values of x is:

9.5.1
$$f'(x) > 0$$
 (2)

9.5.2
$$\frac{f''(x)}{x} < 0$$
 (2)

[19]

The diagram shows the graph of the parabola with equation $f(x) = 9 - \frac{x^2}{9}$; $x \in [0; 9]$.

BC is a line parallel to the y-axis, with C(t;0) a point on the x-axis and B on the graph of f. OB is drawn.

Write down the coordinates of B in terms of t.

10.2 Show that the area of $\triangle OBC$ can be given by: $A(t) = \frac{9}{2}t - \frac{t^3}{18}$. (2)

10.3 Determine the maximum area of $\triangle OBC$. (5)

[9]

(2)

QUESTION 11

- A bag of balls contains 7 green balls and 5 yellow balls. Sihle randomly selects two balls from the bag, one at a time, and without replacing the first one.
 - 11.1.1 Draw a tree diagram to illustrate all possible outcomes. (3)
 - Determine the probability that she selects one yellow and one green ball, in any order. (3)
- 11.2 A smoke detector system in a large warehouse uses two devices: A and B.

 If smoke is present, the probability that it will be detected by device A is 0,71.

 The probability that it will be detected by device B is 0,83, and the probability that it will be detected by both devices is 0.58.
 - Are the two events, namely that device A will detect the smoke and that device B will detect the smoke, mutually exclusive?

 Give a reason for your answer. (2)
 - 11.2.2 If smoke is present, what is the probability that it will **not** be detected? (3)

TOTAL: 150

[11]

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1} \quad ; r \neq 1 \qquad S_\infty = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan\theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In\Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta \qquad \sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \qquad \cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos$$

 $b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$

P(A or B) = P(A) + P(B) - P(A and B)

 $\hat{v} = a + bx$