

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

JUNE 2025

MATHEMATICAL LITERACY P2 MARKING GUIDELINE

MARKS: 100

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
RCA	Rounding consistent accuracy
A	Accuracy
С	Conversion
S	Simplification
SF	Correct substitution in a formula
J	Justification
О	Opinion/Example/Definition/Explanation/Justification/Verification
RT/RG/RM	Reading from a table/graph/map
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off or reason
NPR	No penalty rounding or omitting units
AO	Answer only, full marks

This marking guideline consists of 9 pages.

SA EXAM PAPERS

Proudly South African

MATHEMATICAL LITERACY P2

(EC/JUNE 2025)

MARKING GUIDELINES

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled version).
- Consistent Accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra incorrect item presented.

MATHEMATICAL LITERACY P2

KEY TO TOPIC SYMBOL:

F = Finance; M = Measurement; MP = Maps, plans and other representations; P = Probability

QUESTION 1 [20 MARKS]

ANSWER ONLY FULL MARKS

Ques.	Solution	Explanation	Level
1.1.1	D7 ✓✓ A (Accept 7D)	2A correct grid reference	MP
		(2)) L1
1.1.2	Bar scale OR Linear scale OR Graphic scale ✓ ✓ A	2A correct scale	MP
		(2)) L1
1.1.3	$4:3\checkmark$ A	1A correct ratio	MP
	1:0,75√A	1A unit ratio format	L1
		(2))
1 2 1	2.0	24 1 00	1 1
1.2.1	3 flowers ✓ ✓ A	2A number of flowers	M
		(2)	L1
1.2.2	36 cm (2.5	1M divide by 2	M
1.2.2	Radius = $\frac{36 \text{ cm}}{2} \checkmark \text{M}$	1A radius	L1
	$= 18 \text{ cm} \checkmark \text{A}$	(2)	
1.2.3	Diameter ✓✓A	2A correct answer	M
	, , A	(2)	
1.2.4	C OR Cylinder ✓✓A	2A correct shape	M
		(2)	L1
1.2.5	Area is the amount of space occupied by a two-dimensional	2A definition	M
	object. $\checkmark \checkmark_A$		L1
	OR		
		(2)	
	Area is the space that is covered by an object. $\checkmark \checkmark$ A	(2))
1.2.6	Perimeter = 3,142 × diameter		M
1.2.0	$= 3,142 \times 25 \checkmark \text{SF}$	1SF substitution	L1
	$= 78,55 \text{ cm} \checkmark \text{A}$	1A perimeter	
	76,55 Cm v A	(2)	`
		(2)	<u>' </u>
1.2.7	$Height = \frac{105}{10} \checkmark C$	1C divide by 10	M
		1A height in cm	L1
	$= 10.5 \text{ cm} \checkmark \text{A}$	(2))
		[20]	

QUES	TION 2 [26 MARKS]		
Ques.	Solution	Explanation	Level
2.1.1	A strip chart is easy to read and to understand. ✓ ✓ A	2A explanation	MP
	OR		L4
	A strip chart is less cluttered than other maps. $\checkmark \checkmark \land$		
	(Accept any relevant answer)	(2)	
	√RT		
2.1.2	Distance = $490 \text{ km} - 459 \text{ km} \checkmark \text{M}$ = $31 \text{ km} \checkmark \text{CA}$	1RT total distance 1M subtraction	MP L2
	- 51 KIII v CA	1CA answer	
		(3)	
2.1.3	No. of litres of petrol in tank = $\frac{42}{2}$	1A half a tank of petrol	MP
	$= 21 \text{ litres } \checkmark A$	1	L3
	Distance = $\frac{21}{5.6} \times 100 \checkmark M$	1M dividing by 5,6 and multiply by 100	
	$= 375 \text{ km} \checkmark \text{CA}$	1CA total distance (3)	
2.1.4	191 km ✓ ✓ RT	2RT correct distance	MP
(a)		(2)	L1
(b)	No. of litres of petrol used = $\frac{191}{100} \times 5.6 \checkmark M$	CA from 2.1.4 (a)	MP
	$= 10,696 \text{ litres} $ $\checkmark A$	1M dividing by 100 and	L3
	10,000 files VA	multiply by 5,6	
	No. of litres of petrol left in tank = 21 litres – 10,696 litres \checkmark M	1A litres of petrol used 1M subtraction from 21 <i>l</i>	
	= 10,304 litres ✓CA	1CA litres of petrol in	
	OR	tank	
	OK .	OR	
	Remaining distance = 375 km − 191 km ✓ M	1M subtracting distances	
	$= 184 \text{ km} \checkmark \text{A}$	1A remaining distance	
	No. of litres of petrol used = $\frac{184}{100} \times 5.6 \checkmark M$	1M dividing by 100 and	
	= $10,304$ litres \checkmark CA	multiply by 5,6	
		1CA litres of petrol used NPR	
		(4)	
(c)	No. of litres of petrol bought = 42 litres $-10,304$ litres \checkmark M	CA from 2.1.4 (b)	MP
(0)	$= 31,696 \text{ litres } \checkmark \text{A}$	1M subtraction	L1
	, , , , ,	1A litres of petrol bought	
	(Accept 31,7 litres OR 32 litres)	NPR (2)	
		(2)	

(EC/JUNE 2025)

MATHEMATICAL LITERACY P2

2.1.4 (d)	Petrol cost = 31,696 litres × \$1,12 ✓ M = \$35,49952 ✓ CA ≈ \$35 ✓ R	CA from 2.1.4 (c) 1M multiply with cost 1CA cost of petrol 1R rounding to nearest dollar (3)	F L2
2.1.5	Time = $\frac{\text{Distance}}{\text{Speed}}$ $3,25 \text{ h} = \frac{299 \text{ km}}{\text{speed}} \checkmark \text{SF}$ Speed = $\frac{299 \text{ km}}{3,25 \text{ h}} \checkmark \text{M}$ = $92 \text{ km/h} \checkmark \text{CA}$	1C converting time 1SF substitution 1M changing subject of formula 1CA simplification (4)	MP L3
2.1.6	Probability = $\frac{2}{3} \checkmark A \times 100$ = 66,666% $\approx 66,67\% \checkmark CA$ (Accept 66,7% OR 67%)	1A numerator 1A denominator 1CA answer as a % NPR (3)	P L2

<u>6</u>	MATHEMATICAL LITERACY P2	(EC/JUNE	<u>2025)</u>
QUEST	ΓΙΟΝ 3 [30 MARKS]		
Ques.	Solution	Explanation	Level
3.1.1	Radius = $\frac{0.6 \text{ m}}{2} \checkmark \text{M}$ = 0.3 m	1M finding radius	M L2
	Area of circle = $3,142 \times \text{radius}^2$ = $3,142 \times 0,3^2 \checkmark \text{SF}$ = $0,28278$ $\approx 0,28 \text{ m}^2 \checkmark \text{CA}$ (Accept $0,283 \text{ m}^2$)	1SF substitution 1CA area of circle NPR (3)	
		107	
3.1.2	Area of garden = length × width = 15 m × 5 m \checkmark SF = 75 m ² \checkmark A	1SF substitution 1A area of garden	M L3
	Area of pond = side × side = 1,8 m × 1,8 m = 3,24 $\text{m}^2 \checkmark \text{A}$	1A area of pond	
	Area of circular stone tiles = $0.28 \text{ m}^2 \times 5$ = $1.4 \text{ m}^2 \checkmark \text{A}$	MCA from 3.1.1 1A area of circular stone tiles	
	∴ Area of grass needed = 75 m ² – 3,24 m ² – 1,4 m ² = 70,36 m ² \checkmark MA	1MA subtraction and answer NPR (5)	
3.1.3	Cost of grass = $71 \text{ m}^2 \times \text{R45,50} \checkmark \text{M}$ = R3 230,50 \checkmark CA \therefore Invalid/incorrect \checkmark O	1R number of whole m ² 1M multiply with R45,40 1CA total cost 1O opinion (4)	F L4
3.2.1	Depth of pond = $\frac{60 \text{ cm}}{100} \checkmark \text{C}$ = 0,6 m	1C converting depth to m	M L2

 $Volume = side \times side \times depth$

= 1,8 m × 1,8 m × 0,6 m \checkmark SF = 1,944 m³ \approx 1,94 m³ \checkmark CA

(3)

1SF substitution

1CA volume of pond

7

3.2.2	Capacity = $1.94 \text{ m}^3 \times 1000 \checkmark \text{C}$	CA from 3.2.1	M
3.2.2			
	= 1 940 litres	1C conversion	L4
		1M multiply no. of	
	:. Water required in pond = $1.940 \times 95\% \checkmark M$	litres by 95%	
	= 1 843 litres \checkmark CA	1CA no. of litres	
	∴ Invalid/incorrect ✓O	1O opinion	
		(4)	
		ì	
3.2.3	Maximum no. of goldfish = $\frac{1843}{240} \times 2 \checkmark M$	CA from 3.2.2	M
	$\frac{1}{240}$ $\frac{1}{240}$	1M divide by 240	L2
	V IVI		112
	= 15,358	1M multiply by 2	
		1A number of goldfish	
	≈ 15 goldfish ✓A	(3)	
3.2.4	Surface area of pond = $(length \times width) + 4 (length \times depth)$	CA from 3.2.1	M
	$= (1.8 \text{ m} \times 1.8 \text{ m}) + 4 (1.8 \text{ m} \times 0.6 \text{ m}) \checkmark \text{SF}$	1SF substitution	L3
	$= 7,56 \text{ m}^2$		
	- 7,50 III		
	Sumface area for 2 costs of point $= 7.56 \text{ m}^2 \times 2.625$	1 M manifembra 1 2	
	Surface area for 2 coats of paint = $7,56 \text{ m}^2 \times 2 \checkmark \text{M}$	1M multiply by 2	
	$= 15,12 \text{ m}^2 \checkmark \text{A}$	1A area to be painted	
	No. of 1:tuna of noint = 15,12	1M divide by spread	
	No. of litres of paint = $\frac{15,12}{3} \checkmark M$	rate	
	= 5,04		
	≈ 6 litres ✓ CA	1CA no. of litres of	
	~ o nues v CA	paint	
	OR	OR	
	Symfogo area of mand = (langth x width) + 4 (langth x douth)		
	Surface area of pond = $(length \times width) + 4 (length \times depth)$		
	$= (1.8 \text{ m} \times 1.8 \text{ m}) + 4 (1.8 \text{ m} \times 0.6 \text{ m}) \checkmark \text{SF}$	1SF substitution	
	$= 7.56 \text{ m}^2$		
	,		
	7,56	1M divide by spread	
	No. of litres of paint = $\frac{7,56}{3}$ \checkmark M	· · ·	
	= $2,52$ litres (one coat) \checkmark A	rate	
	2,52 Hit 55 (one cout) * A	1A no. of litres one coat	
	No of litror of point for 2t- = 2.52 litrory 2.625		
	\therefore No of litres of paint for 2 coats = 2,52 litres \times 2 \checkmark M	1M multiply by 2	
	= 5,04	1CA no. of litres of	
	= 6 litres ✓ CA		
		paint	
		(5)	
		(5)	
225	Water in Page 2 hours of 60 de	10	3.6
3.2.5	Water in litres = 2 hours \times 60 \checkmark C	1C converting hours to	M
	= 120 minutes	minutes	L2
	∴ 120 minutes × 7 litres ✓ M	1M multiply with 7ℓ	
	$= 840 \text{ litres } \checkmark \text{CA}$	1CA no. of litres of	
	- oto nucs A CV		
		water	
		(3)	
		[30]	

QUES	ΓΙΟΝ 4 [24 MARKS]		
Ques.	Solution	Explanation	Level
4.1.1	OR Tambo International Airport ✓A Dubai International Airport ✓A	1A first airport 1A second airport (Accept any order) (2)	M L1
4.1.2	7:35 pm ✓✓A	2A correct time (2)	M L1
4.1.3	Time in Johannesburg = $19:35$ $08:10 \checkmark M$ $= 27:45 \text{ (the next day)}$ $\therefore 03:45 \checkmark A$	1M adding flight duration to departure time 1A time in Johannesburg	M L1
	OR	OR	
	Time in Johannesburg = $05:45$ - $02:00 \checkmark M$ = $03:45 \checkmark A$	1M subtraction 1A time in Johannesburg (2)	
4.1.4	OR Tambo International Airport – Dubai International Airport: $= \frac{3994,13}{0,621371} \checkmark M$ $= 6431,771337 \text{ km } \checkmark A$	1M dividing by 0,621 1A distance in km	M L4
	Dubai International Airport – London Heathrow Airport: = 5 505 km		
	Total Distance = 6 427,93114 km + 5 505 km ✓ M = 11 932,9311 km ✓ CA ∴ Kevin is correct ✓ O	1M adding distances 1CA total travel distance 1O opinion (5)	
4.1.5	Volume of a rectangular prism = length \times width \times height		M
	Height of hand luggage = $\frac{490}{10} \checkmark C$ = 49 cm	1C converting height	L2
	∴ Volume of hand luggage = 55 cm × 27 cm × 49 cm ✓ SF = 72 765 cm ³ ✓ CA	1SF substitution 1CA volume of hand luggage (3)	
4.1.6	Probability = 0 OR None✓✓A	2A probability	P
7.1.0	1100aomity – 0 OR Noney V A	(2)	L2

(EC/JUNE 2025)

MATHEMATICAL LITERACY P2

4.2.1	No of e-toll gates = $15 \checkmark \checkmark A$	2A correct no. of e-toll gates	MP
			L2
		(2)	
4.2.2	138 mm ✓ ✓ A	2A distance in mm	MP
		(2)	L2
4.2.3	No. of e-toll gates = 15	CA from 4.2.1	MP
	No. of tourist attractions = $15 \checkmark A$	1A no. of tourist attractions	L4
	Difference = $15 - 15 \checkmark M$	1M subtraction	
	= 0 ✓ CA	1CA difference	
	∴ Kevin's claim is valid/correct. ✓O	1O opinion	
		(4)	
		[24]	
		TOTAL: 100	

