

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

Iphondo leMpuma Kapa: Isebe leMfundo Provinsie van die Oos Kaap: Department van Onderwys Porafensie Ya Kapa Botjahabela: Lefapha la Thuto

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2025

MATHEMATICAL LITERACY P2 MARKING GUIDELINE

MARKS: 150

Symbol	Explanation
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT	Reading from a table/graph/diagram
SF	Correct substitution in a formula
0	Opinion/Explanation/Reasoning
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding Off/Reason
NPR	No penalty for correct rounding minimum two decimal places
AO	Answer only
MCA	Method with consistent accuracy
RCA	Rounding with consistent accuracy

This marking guideline consists of 11 pages.

Proudly South African

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution, mark the crossed out (cancelled) version.
- Consistent Accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra incorrect item presented.

KEY TO TOPIC SYMBOL:

F = Finance; M = Measurement; MP = Maps, plans and other representations; P = Probability

F = Finance; M = Measurement; MP = Maps, plans and other representations; P = Probability			
QUEST	QUESTION 1 [27 MARKS] ANSWER ONLY FULL M		
Ques.	Solution	Explanation	Level
1.1.1	21 learners ✓✓A	2A number of learners (2)	MP L1
1.1.2	Ratio = $9:12 \checkmark A$ $3:4 \checkmark A$	1A correct ratio 1A simplified form (2)	MP L1
1.1.3	5 windows ✓✓A	2A number of windows (2)	MP L1
1.1.4	Clockwise ✓✓A	2A correct direction (2)	MP L1
1.1.5	Longest side = $8.5 \text{ m} \times 1000 \text{C}$ = $8500 \text{ mm} \text{A}$	1C multiply by 1 000 1A answer in mm (2)	MP L1
1.2.1	Cost of one $m\ell = \frac{R15,00}{250} \checkmark M$ = $R0,06 \checkmark A$ OR 6c/ml	1M dividing correct values 1A cost of one mℓ (2)	M L1
1.2.2	Size of largest cup = $\frac{500 \text{ ml}}{1000} \checkmark \text{C}$ = 0,5 ℓ \checkmark A	1C divide by 1 000 1A answer in ℓ	M L1
1.2.3	Capacity refers to the maximum amount of liquid the cup can hold. $\checkmark \checkmark$ A	2A definition (2)	M L1
1.2.4	Capacity = $\frac{95}{100} \times 500 \text{ m} \ell \checkmark M$ = $475 \text{ m} \ell \checkmark A$	1M multiply correct values 1A capacity in mℓ (2)	M L1
1.3.1	One unit on the map represents five units in reality. OR 1 cm on the map represents 5 cm in reality. A	2A explanation (2)	MP L1
1.3.2	Diameter = 15,35 cm \times 2 \checkmark M = 30,7 cm \checkmark A = 31 cm \checkmark R	1M multiply by 2 1A diameter 1R rounding (3)	M L1
1.3.3	Circumference of a circle = $2 \times \pi \times \text{radius}$ = $2 \times 3,142 \times 15,35 \checkmark \text{SF}$ = $96,4594$ = $96,459 \text{ cm} \checkmark \text{A}$	1SF substitution 1A circumference NPR (2)	M L1
1.3.4	Circumference refers to the total distance around the mirror.	2A definition (2) PAPERS [27]	M L1

Ques.	Solution	Explanation	Level
2.1.1	Southwest OR SW $\checkmark \checkmark$ A West of south	2A correct direction (2)	MP L1
2.1.2	On courts seats = $4\sqrt{A}$ Super row seats = $21\sqrt{A}$ Decimal fraction = $\frac{4}{21}$ = $0,190$ = $0,2\sqrt{R}$	1A number of on court seats 1A number of super row seats 1R correct rounding (3)	MP L1
2.1.3	Coming through the players entrance, walk straight until seat 5, \checkmark A then turn right and walk straight behind the cameras to seat 10. \checkmark A Turn right and walk straight to seat 15, turn right passing seat 15, 16 and 17 until seat 18. \checkmark A (Accept any logical direction given)	1A straight to seat 5 1A behind the cameras to seat 10 1A passing seat 15, 16 and 17 until seat 18 (3)	MP L2
2.1.4	The view from front row seats is clearer and uninterrupted. $\checkmark \checkmark A$ OR It gives the best view of performances. $\checkmark \checkmark A$ (Accept any other relevant explanation)	2A explanation (2)	MP L4
2.2.1	University of South Melbourne, Southbank ✓RT Australian Institute of Interns ✓RT	1RT first institution 1RT second institution (Accept any order) (2)	MP L2
2.2.2	Actual distance = 18,3 cm × 35 550 \checkmark M = 650 565 cm \checkmark A = $\frac{650 565}{100 000} \checkmark$ C = 6,50565 km \approx 6,51 km \checkmark CA (Accept 6,5 km OR 6,506 km)	1M multiplying with scale 1A answer 1C dividing by 100 000 1CA actual distance (NPR) (4)	MP L2
2.2.3	Melbourne cricket ground ✓✓A	2RT correct place identified	MP

2.2.4	2,7 km	1SF substitution	MP
2.2.7	Time spent walking = $\frac{2.7 \text{ km}}{20 \text{ km/h}}$ \checkmark SF	1A time in hours	L4
	$= 0.135 \text{ hours} \times 60 \checkmark \Delta$	1C time in minutes	LT
	$= 8.1 \text{ minutes } \checkmark CA$	Te time in innutes	
	$\mathbf{OR} \xrightarrow{1} \times 33 \xrightarrow{\sqrt{M}}$		
	$OR \frac{1}{4} \times 33 \stackrel{\checkmark}{\checkmark}CA$ $= 8.1 \text{ minutes} \stackrel{\checkmark}{\checkmark}CA$ $= 8.25 \text{ minutes}$ $\therefore \frac{8.1}{33} = 0.2454 \stackrel{\checkmark}{\checkmark}M$ $= 0.25 \stackrel{\checkmark}{\checkmark}CA$ $\therefore \text{ The statement is valid} \stackrel{\checkmark}{\checkmark}O$	1M calculating a	
	- 6,25 minutes 33 0,2454 · W	quarter of walking time	
	= 0,25 V CA	1CA answer	
	∴ The statement is valid ✓O	1O opinion	
		(6)	
2.2.5	Walking is a great form of exercise. ✓ ✓ A	2A explanation	MP
2.2.3	Walking is a great form of exercise. V V A	2A explanation	L4
	OR		2.
	Walking limits air pollution caused by gas emissions from		
	the car. $\checkmark \checkmark A$		
	OR		
	Walking is free. Save on petrol cost. ✓ ✓ A		
	OR		
	When you walk you can take short cuts and avoid traffic		
	jams.√√A		
	(Accept any other relevant explanation)	(2)	
2.2.6	Probability = $\frac{2}{5} \checkmark A$	1A numerator	P
	5 v A	1A denominator	L2
		(2)	
			[28]

Ques.	Solution	Explanation	Level
3.1.1	Area of a rectangle = length × height = 4,75 m × 2,5 m \checkmark SF = 11,875 m ² × 2 coats \checkmark M = 23,75 m ² \checkmark A	1SF substitution 1M multiply by 2 coats 1A area for 2 coats	F L3
	No of litres of paint = $\frac{23,75}{5,9} \checkmark M$ = 4,0254 litres ≈ 5 litres $\checkmark R$	1M dividing by spread rate 1R no of litres of paint	
	Cost of paint = 5 litres \times R89,95 \checkmark M = R449,75 \checkmark CA	1M multiply with cost 1CA cost	
	OR	OR	
	Area of a rectangle = length × width = 4,75 m × 2,5 m \checkmark SF = 11,875 m ² \checkmark A	1SF substitution 1A area of wall	
	No of litres of paint = $\frac{11,875}{5,9}$ \checkmark M = 2,012711864 × 2 \checkmark M = 4,0254 \approx 5 litres \checkmark R	1M dividing by spread rate 1M multiply by 2 coats 1R no of litres of paint	
	Cost of paint = 5 litres \times R89,95 \checkmark M = R449,75 \checkmark CA	1M multiply with cost 1CA cost (7)	
3.1.2	Length of wall = 4,75 m × 100 = 475 cm \checkmark C	1C length in cm	M L2
	No of desks next to each other = $\frac{475}{145}$ \checkmark M = 3,2758 \checkmark CA \approx 3 desks \checkmark R	1M divide by length of desk 1CA answer 1R rounding	
	OR Length of desk = $\frac{145 \text{ cm}}{100}$	OR	
	$= 1,45 \text{ m} \checkmark \text{C}$	1C length in m	
	No of desks next to each other = $\frac{4,75}{1,45}$ \checkmark M = 3,2758 \checkmark CA \approx 3 desks \checkmark R	1M divide by length of desk 1CA answer 1R rounding	

3.2.1	Width of page = $\frac{21}{100}$ \checkmark C	1C divide by 100 1A width in meters	M L1
	$= 0.21 \text{ m } \checkmark_{\text{A}}$	(2)	LI
3.2.2	6.95	1M calculating 6,95%	M
3.2.2	Length of t-shirt tucked = $\frac{6,95}{100} \times 8,9 \text{ cm } \checkmark M$ = 0,61855 cm $\checkmark A$	1A length of t-shirt tucked	L2
	Length of t-shirt visible = 8,9 cm $- 0.61855$ cm \checkmark_{M} = 8,28145 $\approx 8,28$ cm \checkmark_{CA}	1M subtraction 1CA length of t-shirt visible	
	OR % of t-shirt visible = $100\% - 6,95\% \checkmark M$ = $93,05\% \checkmark A$ Length of t shirt visible = $\frac{93,05}{4} \times 8.0 \text{ cm}$	OR 1M subtracting % 1A % of length of t-shirt visible	
	Length of t-shirt visible = $\frac{93,05}{100} \times 8,9 \text{ cm} \checkmark M$ = $8,28145$ $\approx 8,28 \text{ cm} \checkmark CA$	1M calculating 93,05% 1CA length of t-shirt visible (4)	
3.2.3	Actual length of sportswear = $8,28 \text{ cm} + 4 \text{ cm} \checkmark \text{M}$	CA from 3.2.2	M
	= 12,28 cm √CA ∴ Statement is invalid ✓O	1M addition 1CA length	L4
		1O opinion (3)	
3.3.1	Obesity ✓✓RT	2RT correct weight status (2)	M L1
3.3.2	BMI = $\frac{82.5 \text{ kg}}{1.72^2}$ ✓SF = 27,8866 ✓S ≈ 27,887 kg/m ² ✓R ∴ Her mother was correct ✓O	1SF substitution 1S simplification 1R rounding to three decimal places 1O opinion (4)	M L4
2 2 2			
3.3.3	Eat less fatty food $\checkmark \checkmark A$ OR Eat regular, smaller meals $\checkmark \checkmark A$	2A 1 st method 2A 2 nd method	M L4
	OR		
	Exercise $\checkmark \checkmark A$ OR		
	Drink enough water $\checkmark \checkmark A$ OR Limit intake of fizzy drinks $\checkmark \checkmark A$		
	Limit intake of fizzy drinks $\checkmark \checkmark$ A (ANY TWO)		
	(Accept any relevant answer)	(4)	[30]

Ques.	Solution	Explanation	Level
4.1.1	Area of rectangle = length \times width \checkmark C	1C conversion	M
1.1.1	$= 160 \text{ cm} \times 102,53 \text{ cm} \checkmark \text{SF}$	1SF substitution	L2
	$= 16404.8 \text{ cm}^2/\text{CA}$	1CA area in cm ²	LZ
	- 10 404,8 cm √CA	TCA area in cin	
	OR	OR	
	Area of rectangle = length \times width		
	$= 1600 \text{ mm} \times 1205,3 \text{ mm} \checkmark \text{SF}$	1SF substitution	
	$= 1.640 480 \text{ mm}^2$	1C conversion	
		1CA area in cm ²	
	$\therefore \frac{1640480}{100} \checkmark C$		
	$= 16404.8 \text{ cm}^2 \checkmark \text{CA}$	(3)	
4 1 2	G 1 20 .1.000	134 1: :1 1 20	MD
4.1.2	Scale = 30 mm : 1 600 mm	1M divide by 30 1A scale	MP
	$= \frac{30}{30} : \frac{1600}{30} \checkmark M $ Accept 1:53 OR 1:53,3		L1
	$= 1:53,33 \checkmark A$	NPR	
	11)11 12	(2)	
4.1.3	Length of container = $\frac{6.5 \text{ m}}{1.605 \text{ m}} \checkmark \text{M}$	1M dividing lengths	MP
	Length of container = $\frac{1,605 \text{ m}}{1,605 \text{ m}}$	1A no. of boxes on	L3
	= 4,049	length	
	≈ 4 boxes ✓ A	iongui	
	2.5 m		
	Width of container = $\frac{2.5 \text{ m}}{0.1 \text{ m}}$		
	= 25 boxes ✓ A	1A no. of boxes on width	
	- 25 boxes v A		
	Height of container = $\frac{2.9 \text{ m}}{1,03 \text{ m}}$		
	= 2,815	1A no. of boxes stacked	
	\approx 2 boxes ✓A		
	Total was of house in south in an adv 25 × 2 / M	1M myltinlication	
	\therefore Total no. of boxes in container = $4 \times 25 \times 2 \checkmark M$	1M multiplication	
	= 200 boxes \checkmark_{CA}	1CA no. of boxes	
		(6)	
4.1.4	Probability = $\frac{4\sqrt{A}}{200\sqrt{A}} \times 100\%$	CA from 4.1.3	P
-	200 VA 10070	1A numerator	L2
	$= 2\% \checkmark \text{CA} \qquad \boxed{\text{If} = \frac{1}{50} \times 100\% = 2\%}$	1A denominator	
		1CA probability as %	
	ONLY 1 MARK	(3)	
4.1.5	$Total cost = R65 750 \times 200 \checkmark M$	CA from 4.1.3	F
	$= R13\ 150\ 000 \checkmark CA$	1M multiply with price	L1
		1CA total cost	
		(2)	

4.1.6	The protective material prevent damages to the plasma TV when transported. $\checkmark \checkmark A$	2A explanation	MP L4
	OR		
	The protective material keeps the plasma TV from		
	moving in the box and cause possible breakage. $\checkmark \checkmark A$	(3)	
	(Accept any other relevant explanation)	(2)	
4.2.1	55	1M dividing and	M
7.2.1	Diameter of bus tyre = $\frac{55}{5} \times 11 \checkmark M$	multiplying	L1
	$= 121 \text{ cm } \checkmark \text{CA}$	1CA diameter	Li
	OR		
	11 .		
	Diameter of bus tyre = $\frac{11}{5} \times 55$ \checkmark M		
	$= 121 \text{ cm } \checkmark \text{CA}$	(2)	
4.2.2	Radius = $\frac{55}{2}$ = 27,5 cm \sqrt{M}	1M finding radius	M
	Volume of a cylinder = $\pi \times \text{radius}^2 \times \text{height}$		L2
	$= 3,142 \times (27,5)^2 \times 70 \checkmark \text{SF}$	1SF substitution	
	$= 166 329,625 \text{ cm}^3 \checkmark \text{CA}$	1CA volume	
		NPR	
	(Accept 166 329,6 OR 166 329,63 cm ³)	(3)	
	· · · · · · · · · · · · · · · · · · ·		
4.2.3	No. of loads = $\frac{60}{15}$ \checkmark M	1M dividing correct values	M
(a)		1CA no. of loads	L1
	= 4 loads ✓CA	(2)	
4.2.3	Total cost = $R417 \times 60 \checkmark M$ = $R25 \cdot 020 \times 2 \cdot \checkmark M$ OR $R417 \times 2 \times 60$	1M multiply with cost	F
(b)	$\begin{array}{c c} - K23 020 \times 2 & \text{M} \\ - \mathbf{p50} 040 \end{array}$	1M multiply by 2	L1
	$= R50 040 \checkmark A \boxed{-R30 040}$	1A total cost	
		(3)	
422	Preventing vehicle breakdown ✓✓A	2A samuet avalenation	М
4.2.3 (c)	Preventing venicle dieakdown VVA	2A correct explanation	M L4
(0)	OR		LŦ
	Maintaining the vehicle ensures safety of all passegers,		
	including the driver $\checkmark \checkmark A$		
	menumg the differ VVA		
	OR		
	Maintaining of vehicle prevents premature wear and		
	tear $\checkmark \checkmark A$		
	OR		
	Maintaining a vehicle helps to avoid expensive repairs		
	when the vehicle breaks down. $\checkmark \checkmark A$		
	(Accept any other relevant explanation)		
		(2)	
	, N M4	(2)	[30]
<u> </u>	MWM CA EVAN	DADEDS	[30]

QUESTION 5			
Ques.	Solution	Explanation	Level
5.1.1	C OR TSA = $\pi \times \text{radius}^2 + (2 \times \pi \times \text{radius} \times \text{height}) \checkmark \checkmark A$	2A correct answer (2)	M L1
5.1.2	Area of a cylinder = $\pi \times \text{radius}^2$ $\frac{65}{3,142} = 3,142 \times \text{radius}^2 \checkmark \text{SF}$ $\text{Radius}^2 = 20,68746022$ $\therefore \text{radius} = \sqrt{20,68746022} \checkmark \text{M}$ $= 4,5483$ $= 4,55 \text{ m} \checkmark \text{CA}$ (Accept 4,548 OR 4,5 m)	1SF substitution 1M dividing area with 3,142 1M finding square root 1CA radius NPR	M L2
5.1.3	Volume of a cylinder = $\pi \times \text{radius}^2 \times \text{depth}$ = 3,142 × 4,55 ² × 1,45 \checkmark SF = 94,31851975 m ³ \checkmark CA	CA from 5.1.2 1SF substitution 1CA volume in cm ³	M L3
	No. of litres = $94,3185 \times 1000 \checkmark C$ = $94,3185 \times 1000 \checkmark C$ = $94,3185 \times 1000 \checkmark C$	1C converting to liters	
	No. of gallons $= \frac{94318,51975}{3,785} \checkmark M$ $= 24919,02768 \text{ gallons}$	1M dividing correct values	
	≈ 24 919,03 gallons ✓CA (Accept 24 919 OR 24 919,028)	1CA no. of gallons NPR (5)	
5.1.4	Rate = $\frac{24 \text{ 919,03}}{30 \text{ 000}} \times 40 \text{ ✓ M}$ = 33,225 hours ✓ CA ∴ Mr Rosseau's claim is VALID ✓ O	CA from 5.1.3 1M dividing correct values and multiply by 40 1CA no. of hours 1O opinion (3)	M L4
5.2.1	Height of sugar = $17 \text{ cm} - 1.5 \text{ cm} \checkmark M$ = $15.5 \text{ cm} \checkmark A$	1M subtraction 1A answer (2)	M L1

5.2.2	$TSA = \pi \times radius^2 + (2 \times \pi \times radius \times height)$		M
	$= 3.142 \times 7^{2} + (2 \times 3.142 \times 7 \times 17) \checkmark SF$ $= 901.754 \text{ cm}^{2} \checkmark CA$ $TSA = (length \times width) + 2 \times (length \times height) + 2$	1M finding the radius 1SF substitution 1CA answer	L3
	(width × height) = $(15 \times 13,5) + 2 \times (15 \times 17) + 2 \times (13,5 \times 17) \checkmark SF$ = $202,5 + 510 + 459$ = $1 \cdot 171,5 \text{ cm}^2 \checkmark S$	1SF substitution 1S simplification	
	Difference in plastic used = $1.71,5 \text{ cm}^2 - 901,754 \text{ cm}^2$ = $269,746 \text{ cm}^2 \checkmark \text{CA}$	1M subtraction 1CA answer (7)	
5.2.3	$0,8521 \text{ g/cm}^3 = \frac{\text{Mass (g)}}{3442,5} \checkmark \text{SF}$ = 3 442,5 cm ³ × 0,8521 g/cm ³ \(\sqrt{MCA} \) = 2 933,35425	1SF substitution 1MCA multiplication 1R mass in grams	M L2
	≈ 2 950 g	(3)	
5.2.4	Beautifying the product $\checkmark \checkmark A$ OR	2A explanation	M L4
	Eliminate rust on stainless steel VVA	(2)	
5.3.1	Speed = $\frac{\text{Distance}}{\text{Time}}$ 75 km/h = $\frac{127 \text{ km}}{\text{Time}} \checkmark \text{SF}$ Time = $\frac{127}{75} \checkmark \text{M}$ = 1,6933 hours $\checkmark \text{CA}$ = 0,6933 \times 60 $\checkmark \text{C}$ = 41,6 minutes Time = 1 hour 42 minutes $\checkmark \text{S}$	1SF substitution 1M changing subject of formula 1CA time in hours 1C converting time 1S time in hours and minutes (5)	MP L3
5.3.2	Probability = $\frac{1}{2} \checkmark A$	1A numerator 1A denominator (2)	P L2
			[35]
		TOTAL:	[150]

