

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

PREPARATORY EXAMINATION

2025

MATHEMATICS PAPER 1 (10611)

MATHEMATICS: Paper 1

10611F

SA EXAM This Paper was downloaded from SAEXAMPAPERS

PREPARATORY EXAMINATION 2025

NAME OI	F SCHOO	L						
CANDIDA	ATE'S NA	ME	04_0					
DATE		D	4 t 4 t 1	4 7 7	BOOK NU	JMBER	OF	BOOK(S)
ТЕАСН	ER		PAPER NUMBER 1					
SUBJEC	T NAME			MATHEM	ATICS	(1061	1)	
	1	ANSWER A		QUESTIONS IN		JESTION	PAPER	l.
	MARKE		MODERA	OR'S INITIALS IN RELEVED BLOCK	VANI	RE	-MARK/RE-C	HECK
Question	Marks	Marker's Code & Initials	Marks			Question	Marks	Initials
1						1		
2						2		
3						3		
4						4		
5						5		
6						6		
7						7		
8						8		
9						9		
10						10		
11						11		
		TOTAL				TOTAL		

TIME: 3 hours

MARKS: 150

34 pages + 1 information sheet

SA EXAM PAPERS

Proudly South African

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of 11 questions. Answer ALL questions in the spaces provided.
- 2. Show ALL calculations clearly.
- 3. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- Round-off ALL final answers appropriately according to the given context, unless stated otherwise.
- 5. Indicate units of measurement, where applicable.
- 6. Diagrams are NOT necessarily drawn to scale, unless stated otherwise.

 Show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 7. No pages may be torn from this question paper.
- 8. Candidates may not retain a question paper or remove it from the examination room. Question papers must be returned to the invigilator at the end of the examination session.
- Answers must be written in black/blue ink as distinctly as possible. Do NOT write in the margins.
- 10. Indicate the questions you have answered by drawing a circle around the relevant numbers on the front cover of the question paper where marks are to be recorded.
- 11. Draw a neat line through any work/rough work that must NOT be marked.
- 12. In the event that you use the additional space provided:
 - 12.1 Write down the number of the question.
 - 12.2 Leave a line and rule off after your answer.

13.

This Paper was downloaded from SAEXAMPAPERS

10611/25

1.1	Given: $f(x) = (x^2 - 3)(3x - 1)(x + 2)$	
	Solve $f(x) = 0$ if:	
1.1.1	x is an integer	
		(2)
1.1.2	x is a rational number	
		(1)
1.1.3	x is a real number	(1)
		(1)
1.2	Solve for x:	(1)
1.2.1	$-15x^2 - 9x + 4 = 0$ (Correct to TWO decimal places)	
	9	
	!	
		(3)
1.2.2	$(3x-2)^2 \ge 3x$	
		85,0048
		(4)

1.2.3	$5^x = 5(4+5^{2-x})$	
1.2		(4)
1.3	Solve for x and y : $\log_x 16 = 4$ and $y + \sqrt{x+7} = x+1$; $x \ge 0$	
	$\log_x 10 - 4$ and $y : \sqrt{x} : 7 - x : 1$, $x \ge 0$	
		(6)
1.4	Calculate TWO numerical values for p so that $x^2 + p(2x+7) + 8$ is a perfect square.	
		(4)
	AND A	(4) [25]

SA EXAM PAPERS

				_		
SA EXAM PAPERS	This Paper was	downloaded	from	SAEXAMPAPERS	5 10	611/2

n	T	F	C	Т	T	n	N	1
v	U	L	0	1	Ľ	u	IN	7

	owing sequence of numbers forms a quadratic number pattern: -3; -6; -11;	
2.1	The first differences of the given sequence also form a sequence.	
	Determi ne an expression for the n^{th} term of the first differences.	
15		(3)
2.2	Calculate the first difference between the 35 th and 36 th terms of the quadratic sequence	e.
		(1)

	·	
SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25

Determine an expression for the n^{th} term of the quadratic sequence	ice.
<u> </u>	
·	
Explain why the sequence will never contain a POSITIVE term.	
the state of the second	

This Paper was downloaded from SAEXAMPAPERS

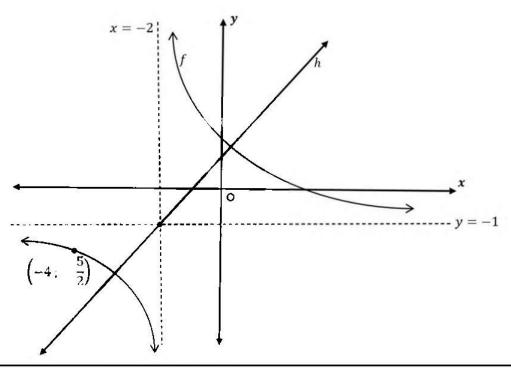
10611/25

3.1	The graphic below shows a dartboard from which patterns relevant to the different circan be derived.	rcles
	The radii of the largest circle and then moving consecutively to immediate inward circle by: 18 cm; $6\sqrt{3}$ cm; 6 cm The innermost circle has a radius of $\frac{2}{3}$ cm.	rcles is
3.1.1	Show that the areas of the circles form a converging geometric sequence.	
		(3)

SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	8
	-		9960

2	Calculate the number of circles in the sequence forming the dartboard.	
		-
		_
		-
		-
		- 11

This Paper was downloaded from SAEXAMPAPERS 1	0611/25	9


3.2	Given the series: $(1\times2) + (5\times6) + (9\times10) + (13\times14) + + (81\times82)$	
	Write the series in sigma notation. (It is not necessary to calculate the value of the se	eries.)
		6
	DOW .	
		81
		2.48
		(4)

SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	10

In the series $a+ar+ar^2+$ the sum to infinity is 1.	
In the series where the terms are the squares of the above series, the	he sum to infinity i
Determine the common ratio.	
3 50 000 00000 00	
n n	

QUESTION 4

The graphs of the functions $f(x) = \frac{a}{x+p} + q$ and h(x) = mx + c are sketched below.

4.1	Write down values of p and q .	
		(2)

		(2)
4.2	Calculate the value of a .	
		(1)
4.3	Write down the range of f.	

(1)

SAFYAM This Departures downloaded from CAEVAMDADEDS 10/11/05			- 191	
TAPERS THIS Paper was downtoaded from SAEXAMPAPERS 10611/25	SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	12

4.4	Determine the equation of the line of symmetry of f for $m < 0$ in the form $y =$	9
		(3)
4.5	Write down the equations of the asymptotes of $f\left(x+4\frac{1}{2}\right)$.	
		-
		(2)
		[9]

QUESTION 5

Given:

- $f(x) = 2x^2 x 15$
- $\bullet \quad h(x) = \log_{\frac{1}{2}} x$

		12
5.1	Write down the coordinates of the turning point of f .	
		(2)
5.2	Show that the x-coordinates of the x-intercepts of f are $-\frac{5}{2}$ and 3 respectively.	

(1)

SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	14

Sketch the graphs of f , g and h below. Clearly label ALL the intercepts with the at the asymptotes (where necessary) on the graph.	axes and
the asymptotes (where necessary) on the graph.	1
	(

SA EXAM PAPERS	This Paper was downloaded from SAEXAMPA	PERS	10611/25	15

If point H is a point on g and point R is on f such that the abscissa of both point determine the length of line HR.	s is 4,
· 	
	(3)
Write down the:	
Domain of h^{-1}	
	(1)
Range of h^{-1}	
	(1)
Determine the value(s) of k if the roots of $2x^2 - x + k = 0$ are equal.	
	(2)
	Write down the: Domain of h^{-1} Range of h^{-1}

SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	16

5.7	Determine the maximum value of $g(x) - f(x)$.	
	2 3 2 2	
		(2)
		(3)
		[18]

10611/25

Given:	$f(x) = 3^x$	
6.1	Determine the equation for f^{-1} in the form $f^{-1}(x) =$	
		(1)
6.2	Sketch the graphs of f and f^{-1} . Clearly show ALL intercepts with the axes and the asymptote.	
		(4)
6.3	Write down the equation of the line of symmetry between the two graphs you have drawn.	
<i>c</i> 4		(1)
6.4	For which values of x will $f(x) \times f(x) \le 0$?	
		el Harriera
		(1)

6.5	Write down the range of $h(x) = 3^{-x} - 4$.	
	ļ ————————————————————————————————————	
		(1)
6.6	Write down an equation for g , if the graph of g is the image of the graph of f after f has been translated two units to the right and reflected about the x -axis.	
		(2)
		[10]

7.1	A business buys a machine that costs R120 000. The value of the machine depreciates at 9% per annum according to the diminishing-tmethod.	balance
7.1.1	Determine the scrap value of the machine at the end of 5 years.	
		(2)
7.1.2	After 5 years the machine needs to be replaced. During this time, inflation remained c at 7% per annum. Determine the cost of a new machine at the end of 5 years.	constant
		(2)

SA EXAM This Paper was downloaded from SAEXAMPAPERS 10611/25

The business estimates that it will need approximately R90 000 by the end of 5 years. A sinking fund for approximately R90 000, into which equal monthly instalments must paid, is set up. Interest on this fund is 8,5% per annum, compounded monthly. The first	st be
payment will be made immediately and the last payment will be made at the end of the	e
5-year period.	
Calculate the value of the monthly payments into the sinking fund.	

SA EXAM	This Paper was downloaded from SAEXAMPAPERS	10611/25	21
PAPERS	This raper was downtoaded from SAEAAMI AT ERS	10011/23	41

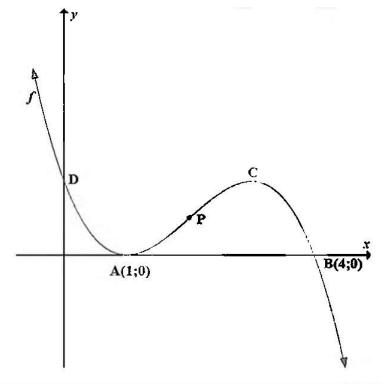
For now many mont	hs will she be able t	o live off her invest	ment?	
2				
<u></u>	e			
		-		
	D. 42			
	ė.			

This Paper was downloaded from SAEXAMPAPERS

10611/25

8.1	Given: $f(x) = -2x^2 + 1$.	
8.1.1	Determine $f'(x)$ from first principles.	
		(4)
8.1.2	Hence, calculate the gradient of the tangent to f at $x = -\frac{1}{2}$.	
		(1)

10611/25


8.3 Given: $h(x) = ax^2$, $a > 0$. Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.	8.2	Determine the derivative of $f(x) = \sqrt[3]{x^2} + \frac{1}{4x^4}$.	
8.3 Given: $h(x) = ax^2$, $a > 0$, Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.			
8.3 Given: $h(x) = ax^2$, $a > 0$, Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.			5
8.3 Given: $h(x) = ax^2$, $a > 0$, Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.			
8.3 Given: $h(x) = ax^2$, $a > 0$, Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.			
Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.			(3)
(5)	8.3	Given: $h(x) = ax^2$, $a > 0$.	
		Determine the value of a if it is given that $h^{-1}(8) = h'(4)$.	
		3 10 10 10 10 10 10 10 10 10 10 10 10 10	
			i.
			5
			ŧ
			(5) [13]

QUESTION 9

The graph of the function $f(x) = -2x^3 + ax^2 + bx + c$ is sketched below.

The following properties of f are given below:

- Point A(1; 0) is a stationary point.
- Point B(4; 0) is an x-intercept.
- Point P is the point of inflection.
- Point C is the turning point.
- Point D is the y-intercept.

9.1	Show that $a = 12$, $b = -18$ and $c = 8$.	
		(3)

TATERS	SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	25
--------	-------------------	---	----------	----

9.2	Kusal states that a tangent to the curve of f can be drawn through points C and D. Validate this statement using an appropriate calculation.	
	variation this statement using an appropriate calculation.	
2 2		(3)
9.3	Points A, P and B are joined to form $\triangle APB$. Calculate the area of $\triangle APB$.	
0.4	For which values of x is f concave down?	(4)
9.4	For which values of x is f concave down?	-
		(1)

	SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS	10611/25	26
--	-------------------	---	----------	----

9.5	Write down the values of x for which f is strictly increasing.	
		(1)
9.6	Write down the coordinates of the turning points of $h(x) = f(x) - 3$.	20 20 2
	Stanfullan rate 2. ti	
		(2)
,		[14]

This Paper was downloaded from SAEXAMPAPERS

10611/25

A metal box (without a top) is to be constructed, from a square metal sheet with sides of 20 cutting square pieces of equal size from the corners of the sheet and then folding up the side Calculate the dimensions of the box with the largest volume that can be constructed in this n	3.
Calculate the difficultions of the box with the targest volume that can be constructed in this in	lamer.
	(7) [7]

10611/25

28

11.1	A six-sided die is rolled and the number of dots landing face up is noted. Consider the following events:	
	• Event A: The number observed is 2 at the most.	
	• Event B: The number that landed face up is an even number.	
	• Event C: The number 6 is facing up.	
	Use the given information to:	
11.1.1	Determine, separately, the probability of event A and event B.	
		The same
11.1.2	Use $P(A)$ and determine $P(A')$.	(2)
11.1.2	Ose 1 (11) and determine 1 (11).	
		2.000
11.1.3	Are the events mutually exclusive? Give a reason for your answer.	(1)
		-
		(2)

SA EXAM	This Paper was downloaded from SAEXAMPAPER S —	- 1/2	
PAPERS	This raper was downtoaded from GALAAMI AI ERO	10611/25	29
		CONTRACTOR OF A CONTRACTOR OF	

11.1.4	Calculate $P(A \text{ or } C)$.	
	<u> </u>	(2)
11.1.5	Are B and C independent events? Give a reason for your answer.	(=)
		(3)

10/11/25	3
10611/25	

11.2 The probability of getting the first answer in a quiz correct, is 0,6. If the first answer is correct, the probability of getting the next answer correct rises to 0,7. However, if the first answer is incorrect, the probability of getting the next answer correct is 0,4. With the use of a tree diagram, determine the probability of getting the second answer correct.

30

(3)

SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS—	T T	
AND THE STREET		10611/25	31

-	
Ī	

This Paper was downloaded from SAEXAMPAPERS 10611/25

Additional spa	ce

32

SA EXAM	This Paper was downloaded from SAEXAMPAPERS—	- Ve (I	
PAPERS	This raper was downtoaded from SALAMIFAFERS	10611/25	33
		10011/25	33

	Additional space	
	-	
-		

SA EXAM	This Paper was downloaded from SAEXAMPAPER S —	e Ve II -	
PAPERS	This raper was downtoaded from SALAAMFAFLING	10611/25	21
		10011/25	34

	Additional space	
_		
	s	

TOTAL: 150

10611/25

1

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \quad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d] \qquad T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1 \qquad S_n = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^n]}{i} \qquad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right) \qquad y = mx + c$$

$$y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$(x - a)^2 + (y - b)^2 = r^2 \qquad \ln \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$area \Delta ABC = \frac{1}{2}ab \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases} \qquad \sin 2\alpha = 2 \sin \alpha \sin \alpha$$

$$\vec{x} = \sum_n \frac{x}{n} \qquad \sigma^2 = \sum_{i=1}^n (x_i - \bar{x})^2 \\ P(A) = \frac{n(A)}{n(S)} \qquad P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx \qquad b = \sum_{i=1}^n (x_i - \bar{y})^2$$

