

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

JUNE EXAMINATION GRADE 12

2025

MATHEMATICS (PAPER 2)

SURNAME:								
NAME:								
SCHOOL:								
DATE:	2	0	2	5	-		-	

	MARKER					MODE	RATOR		
QUESTION			MARKER'S INITIALS		MARKS		MODERATO INITIALS		
1	0				0				
2	0				0				
3	0				0				
4	0				0				
5	0				0				
6	0				0				
7	0				0				
8	0				0				
9	0				0				
				TOTAL					

TIME: 3 hours

MARKS: 150

GAUTENG PROVINCE

31 pages + 1 information sheet

SA EXAM PAPERS

INSTRUCTIONS AND INFORMATION.

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 9 questions. Answer ALL questions in the spaces provided.
- 2. Clearly show ALL calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- 4. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 5. If necessary, round-off answers correct to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. An INFORMATION SHEET with formulae is included at the end of the question paper.
- 8. No pages may be torn from this question paper.
- 9. Candidates may not retain a question paper or remove it from the examination room. Question papers must be returned to the invigilator at the end of the examination session.
- 10. Answers must be written in black/blue ink as distinctly as possible. Do not write in the margins.
- 11. Draw a neat line through any work/rough work that must not be marked.
- 12. In the event that you use the additional space provided:
 - 12.1 Write down the number of the question.
 - 12.2 Leave a line and rule off after your answer.
- 13. Write neatly and legibly.

QUESTION 1

In the diagram below, ADQC and DPB are straight lines. D is a point on the y-axis. A and B are points on the x-axis. The equation of line BC is y = 2x - 24 and the equation of line AC is 7y - x = 14. It is given that P(6; 1), Q(7; 3), T(k; -1) and TP = $\sqrt{293}$.

1.1	Calculate the gradient of PQ.	
		(2)
1.2	Give a reason why PQ BC.	
		-
		(2)

	SA PA	EX	AN
4000			

MA

	MATHEMATICS (PAPER 2)	GR12 0625	4
1.3	If Q is the midpoint of DC, calculate the coordinates of point C.		<u> </u>
1.5	if \(\Q \) is the interpoint of \(B \), earethere the coordinates of point \(C \).		-
			-
			-
			-
			-
			-
			-
			-
			-
			-
1.4	Calculate the size of AĈB.		(4)
	Calculate the size of AGB.		-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			-
			(5)

THE	PXXXIII	SA.	EX	A?
400		P/	PE	RS

MATHEMATICS (PAPER 2)

20	- 10	0.40-
	R12	0625

C	alculate the area of quadrilateral BODC.	
L		
		(4
		(7)

MATHEMATICS	(PAPER 2)
--------------------	-----------

GR12 0625

6

1.6	If TD = \(\frac{702}{202}\) determine the yields of t	
1.0	If TP = $\sqrt{293}$, determine the value of k .	
		(3)
1.7	E(a;b) is a point in the second quadrant, such that ABCE is a parallelogram.	
	Determine the values of a and b.	
	Determine the values of u and b .	
		(2)
1.8	Determine the equation of the line which is perpendicular to AC and passes through	(2)
1.0		
	Q(7;3).	
		-
		(3)
		[25]

[25]

QUESTION 2

In the figure below, the line 2x - y + 1 = 0 is a tangent to the circle, with centre M(a; b), at G(2; 5). The centre of the circle lies on the line x + y = 9.

2.1.1	Determine the gradient of GM.	
		_
		(2)
2.1.2	Determine the equation of GM in the form $y = mx + c$.	
		-
	NOMA .	(2)

GAUTENG PROVINCE

SA EXAM PAPERS

CI	R12	0625
		UUZ

2.1.3	Calculate the coordinates of M.	
		(4)
2.1.4	Hence, or otherwise, calculate the length of the radius of the circle.	
		(2)
2.1.5	Write down the equation of the circle in the form $x^2 + y^2 + Cx + Dy + E = 0$.	
		(3)

MATHEMATICS (PAPER 2)

GR12 0625

9

2.2	Determine the equation of the inverse of the tangent to the circle	
	$x^2 + y^2 - 26x + 12y + 105 = 0$ at (7; 2).	
	Give your answer in the form $y = mx + c$.	
		_
		-
		_
		1
		(7)
		L ` ´

[20]

GR12 0625

10

QUESTION 3

3.1		$=\frac{3}{4}$, where $\beta \in [180^\circ; 270^\circ]$ is given. the aid of a sketch, and without the use of a calculator , calculate:	
	3.1.1	$\sin eta$	
			(3)
	3.1.2	$2-\sin 2\beta$	
			(3)
	3.1.3	$\cos^2(90^\circ - \beta) - 1$	(3)
			(3)

MATHEMATICS (PAPER 2)

	00	
	06	45
		4.

Evaluate	$-1+\cos(180^{\circ}-\theta).\sin(\theta-90^{\circ})$
Evaluate.	$\frac{-1+\cos(180^\circ - \theta).\sin(\theta - 90^\circ)}{\cos(-\theta).\sin(90^\circ + \theta).\tan^2(540^\circ + \theta)}$

GR12 0625

12

[21]

3.3	Prove the identity: $\frac{(\sin \theta - \cos \theta)^2}{1 - \sin^2 \theta} = \frac{1}{\cos^2 \theta} - 2 \tan \theta$	
		(5)

QUESTION 4

4.1	Given	$\cos(A - B) = \cos A \cos B + \sin A \sin B.$	
	4.1.1	Use the above identity to deduce that $sin(A + B) = sin A cos B + cos A sin B$.	
			(3)

_			
	D12	00	7 =
	R 12	un.	<i>2</i> – 3

	4.1.2	Hence, or otherwise, determine the general solution of the equation	
		$\sin(2x + 50^\circ) - \sin 15^\circ \cos 48^\circ = \sin 48^\circ \cos 15^\circ.$	
			(4)
4.2	If cos	$(x + 30^\circ) = -2\sin x$, deduce that $\tan x = -\frac{1}{\sqrt{3}}$.	
			(5)

GR12 0625

Given	the expression: $\frac{4 \sin x \cos x}{1 + \cos x}$	
GIVE	the expression: $\frac{4 \sin x \cos x}{2 \sin^2 x - 1}$	
4.3.1	Simplify the above expression to a single trigonometric ratio.	
4.3.2	For which value(s) of x in the interval $-90^{\circ} < x < 90^{\circ}$ will the above expression be undefined?	
	enpression of undermod.	

SA EXAM	This Paper was downloaded from SAEXAMPAPERS	
PAPERS	MATHEMATICS (PAPER 2) GR12 0625	15

4.3.3	Without using a calculator, determine the value of $\frac{4 \sin 15^{\circ} \cos 15^{\circ}}{2 \sin^2 15^{\circ} - 1}$	
	without using a calculator, determine the value of $\frac{1}{2 \sin^2 15^\circ - 1}$	
		(2)
 ı		[20]

GR12 0625

16

QUESTION 5

In the diagram below, the graphs of $f(x) = \cos x + m$ and $g(x) = \sin(x + n)$ are drawn on the same set of axes for $x \in [-240^\circ; 240^\circ]$. A is the *x*-intercept of *f* and has coordinates (60°; 0). B is the turning point of *g* and has coordinates (60°; 1).

5.1	Determine the values of m and n .	
		(2)
5.2	Write down the amplitude of f .	(-)
		(1)

GR12 0625

5.3	If $h(x) = g(2x)$, write down the period of h .	
		(1)
5.4	For which values of x will $f(x)$. $g(x) \le 0$ in the interval $x \in [0^\circ; 240^\circ]$?	(2)
5.5	Describe the transformations that the graph of g has to undergo to form the graph of p , where $p(x) = -\cos x$.	
		(2)

QUESTION 6

In the diagram below, ABD is a horizontal plane, and BC is a vertical pole. The angle of elevation from A to the top of the pole is equal to x. It is given that $\widehat{ADB} = 2x$, $\widehat{CBD} = 90^{\circ}$ and AD = BD.

Prove: AD =	h	
Prove: AD =	$2\sin x \tan x$	
		-
		-
		-
		-
		-
		(6)

[6]

QUESTION 7

7.1 P, Q, R, S and T lie on the circle with centre O. PR is perpendicular to OQ and these two lines intersect at F. POT is a straight line. $\hat{P}_1 = 42^{\circ}$.

	7.1.1	Determine, giving reasons , the sizes of each of the following angles:	
	(a)	$ \widehat{R}_1 $	
			_
			(2)
	(b)	Ŝ	(2)
			_
			_
1			(2)

NAME SA EXAM	This Paper was downloaded from SAEXAMPAF	EDC	
	MATHEMATICS (PAPER 2)	GR12 0625	20
	74.111.111.111.111.11.11.11.11.11.11.11.1	0.00	

(c)	PQR	
	1 QIV	
		(3)
7.1.2	If $PR = 7$ cm and $QR = 4$ cm, determine the length of QF .	
		(3)

7.2 In the diagram below, B, D and C lie on the circle with centre O. AB and AD are tangents to the circle at B and D respectively. $B\widehat{A}D = 59^{\circ}$.

Detern	nine, gi	iving reasons, the sizes of each of the following angles:	
	7.2.1	$ \widehat{{f B}}_1 $	
			(4)

SA EXAM PAPERS

This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (PAPER 2) GR

GR12 0625

22

	7.00		
	7.2.2	\widehat{O}_1	
·			
·			
			(4)
			 (4)

[18]

QUESTION 8

8.1 In the diagram below, A, B and C are points on the circle with centre O.

Prove the theorem which states that $\widehat{AOC} = 2\widehat{B}$.	
SA EXAM PAPERS	

8.2 In the diagram below, BC||FD and $\hat{C}_3 = x$. AFB and EFC are straight lines.

8.2.1	Determine, giving reasons , FOUR other angles equal to x .	
8.2.2	Prove that AFCD is a cyclic quadrilateral.	
0.2.2	Trove that the OB is a cyclic quadrinateral.	

8.3 In the diagram below, AC is the diameter of the circle with centre O. AC is produced to P. $\widehat{B}_1 + \widehat{B}_2 = 127^{\circ}$ and $\widehat{P} = 16^{\circ}$.

Show, giving reasons , that BP is a tangent to the circle at B.	

QUESTION 9

9.1 In the diagram below, PQ = QR = RS and VR||TS.

9.1.1	Determine the value of $\frac{TV}{VP}$	
		(2)
9.1.2	Determine the value of $\frac{\text{area of } \Delta PQV}{\text{area of } \Delta PST}$	
		(5)

9.2 In the diagram below, B, C and D are points on the circle and ADC is a straight line. AB is a tangent to the circle at B.

Prove, giving reasons , that:				
9.2.1	ΔCBA ΔBDA			
	>>	(4)		

SA EXAM PAPERS

GR12 0625

28

_			
	9.2.2	$AD. DC = AB^2 - AD^2$	
			(4)
1			(4)

[15]

GR12	ハムコモ

ADDITIONAL SPACE	
SA EXAM PAPERS	

_			_
	R12	. 06	525

ADDITIONAL SPACE	
SA EXAM PAPERS	

ADDITIONAL SPACE			

TOTAL: 150

GR12 0625

1

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1 + ni)$$
 $A = P(1 - ni)$ $A = P(1 - i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^{i}$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$

$$T_n = ar^{n-1}$$

$$T_{n} = ar^{n-1}$$

$$S_{n} = \frac{a(r^{n} - 1)}{r - 1} ; r \neq 1$$

$$S_{\infty} = \frac{a}{1 - r}; -1 < r < 1$$

$$P = \frac{x[(1 + i)^{n} - 1]}{i}$$

$$S_{\infty} = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
:
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$
$$area \triangle ABC = \frac{1}{2}ab\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$$
$$\cos(\alpha + \beta) = \cos \alpha . \cos \beta - \sin \alpha . \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha . \cos \beta + \sin \alpha . \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\overline{x} = \frac{\sum x}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

 $\hat{v} = a + bx$

SA EXAM PAPERS

Proudly South African

GRADE 12 NOITANIMAX3 3NUL

2025

(S A39A9) **MATHEMATICS**

MATHEMATICS P2

90X