

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

SA EXAM This Paper was downloaded from SAEXAMPAPERS

PREPARATORY EXAMINATION 2025

NAME OF SCHOOL												
CANDIDATE'S NAME												
DATE	D	D	M	M	Y	Y	Y	Y		BOOK NUMBER	OF	BOOK(S)
TEACHER						PAPER NUMBER	2					
SUBJECT NAME		MATHEMATICS (10612)										

ANSWER ALL THE QUESTIONS IN THE QUESTION PAPER.

	MARKER			MODERATOR'S INITIALS IN RELEVANT BLOCK						NT		RE-MARK/RE-CHECK				
Question	М	arks	Marker's Code & Initials	N	larks								Question	Mar	ks	Initials
1													1			
2													2			
3													3			
4													4			
5													5			
6													6			
7													7			
8													8			
9													9			
10													10			
11													11			
				I 1								i				
			TOTAL										TOTAL			

TIME: 3 hours

MARKS: 150

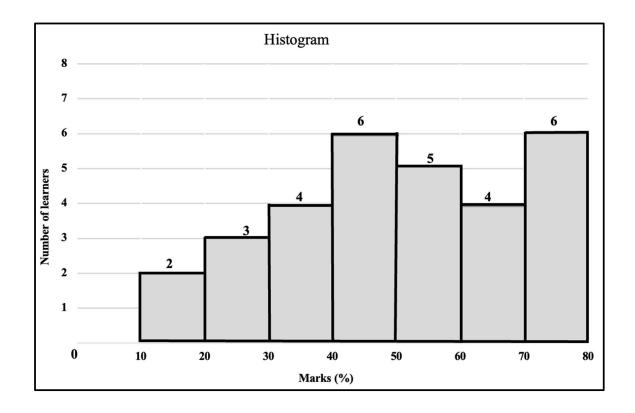
34 pages + 1 information shee

SA EXAM PAPERS

Proudly South African

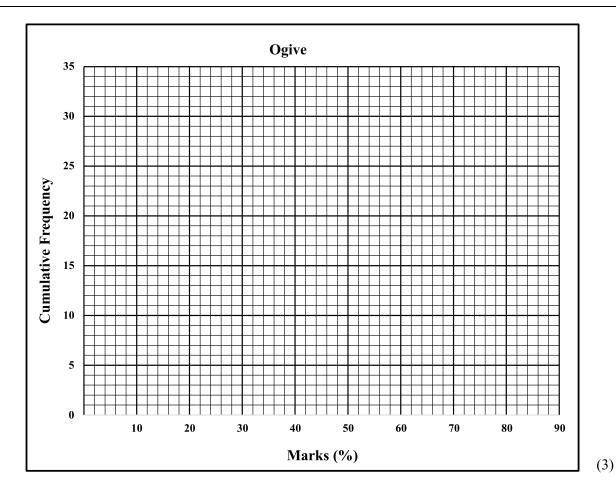
INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.


- 1. This question paper consists of 11 questions. Answer ALL questions in the spaces provided.
- 2. Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- 3. Answers only will NOT necessarily be awarded full marks.
- 4. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 5. If necessary, round-off answers correct to TWO decimal places, unless stated otherwise.
- 6. Diagrams are NOT necessarily drawn to scale.
- 7. An information sheet with formulae is included at the end of the question paper.
- 8. No pages may be torn from this question paper.
- 9. Candidates may not retain a question paper or remove it from the examination room. Question papers must be returned to the invigilator at the end of the examination session.
- 10. Answers must be written in black/blue ink as distinctly as possible. Do NOT write in the margins.
- 11. Indicate the questions you have answered by drawing a circle around the relevant numbers on the front cover of the question paper where marks are to be recorded.
- 12. Draw a neat line through any work/rough work that must NOT be marked.
- 13. In the event that you use the additional space provided:
 - 13.1 Write down the number of the question.
 - 13.2 Leave a line and rule off after your answer.
- 14. Write neatly and legibly.

KEEP THIS PAGE BLANK.

The histogram below shows the marks (in %) of Grade 11 learners in their November 2024 examination.



Class Interva (Marks in %)	Hradiianev	Cumulative frequency	
$10 \le x < 20$			
$20 \le x < 30$			
$30 \le x < 40$			
$40 \le x < 50$			
$50 \le x < 60$			
$60 \le x < 70$			
$70 \le x < 80$			
TOTA	L		

10612/25

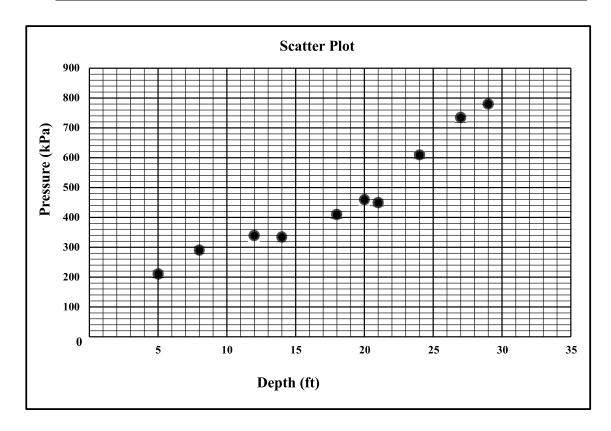
5

1.2 Draw an ogive (cumulative frequency graph) to represent the data.

1.3	Use the ogive to estimate how many learners obtained at least 54% in the examination.	
		(2)

NAME SA EXAM	This Paper	was downloaded from SAEVAMDADEDS		
PAPERS	IIIIs rapei	was downloaded from SAEXAMPAPERS— MATHEMATICS (Paper 2)	10612/25	6

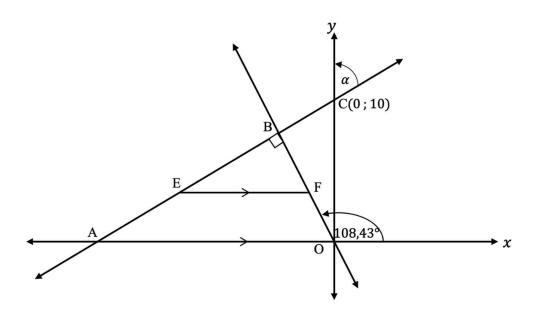
1.4	It is further given that the minimum mark is 12% and the range of the data is 66%.	
	Use the grid provided to draw a box-and-whisker diagram.	
	0 10 20 30 40 50 60 70 80 90	
	MARKS (%)	
		(4)
		(4) [11]



KEEP THIS PAGE BLANK.

2.1 A town manager conducted a survey to measure the pressure of the sea level in his coastal city. The table and the scatter plot below shows the results of the survey:

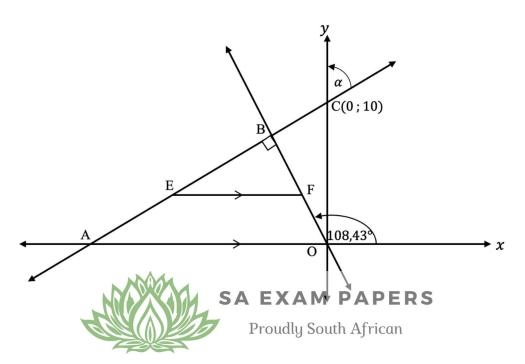
Depth (ft)	5	8	12	14	18	20	21	24	27	29
Pressure (kPa)	210	290	340	335	410	460	450	610	735	780


2.1.1	Determine the equation of the least squares regression line for the data.							
		(3)						
2.1.2	Use the scatter plot provided above to draw the least squares regression line.	(2)						
2.1.3	Write down the correlation coefficient.							
		(1)						

NAME SA EXAM	This Paper	was downloaded fr	CAEVAMDADEDO		
PAPERS	IIIIs Papei	MATHEMATIC	S (Paper 2)	10612/25	9

	Runners	1					
			2	3	4	5	
	Level of testosterone	6,7		p		4,3	
	Level of testoster one	0,7	211 1 2,1	P	3,0	1,5	
The mean o	f the five runners is 7,7 an	d the s	values of the	e last	three	runners	s form an
	equence. Determine the va			o rast	unce	ranner	3 TOTHI UII
	equence. Betermine the ve	<u> </u>	wana p.				

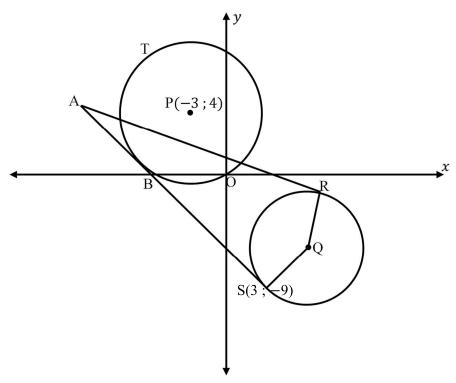
In the diagram, \triangle ABO is drawn. E is the midpoint of AB which is produced to C. A is the *x*-intercept and C(0; 10) is the *y*-intercept of AC. Line EF is drawn parallel to the *x*-axis. AB \perp OB and the angle of inclination of OB is 108,43°. The angle formed by AC and the *y*-axis is α .


3.1	Determine the gradient of line OB.									
		(2)								
3.2	Determine the equation of line AB in the form $y = mx + c$.									
	SA EXAM PAPERS	(2)								

	This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2) 10612/2	25	11	_
3.3	This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2) 10612/2 Calculate the coordinates of B.	25	11	
3.4	Calculate the length of BF.	_	(3)	
		- - - -		
			(4)	

SA EXAM	This Paner	was downloaded from SAI	YAMDADERS	
PAPERS	IIIIs Fapei	was downloaded from SAI MATHEMATICS (Pa	per 2) 10612/25	12

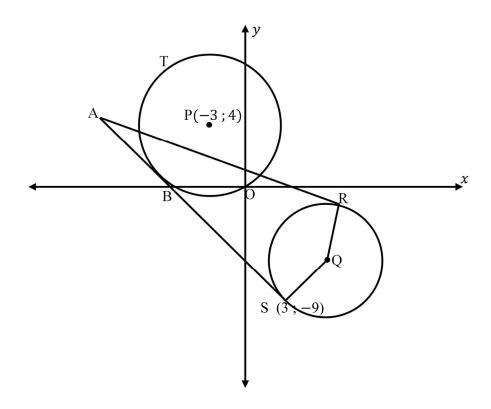
3.5	Calculate the area of ΔCBO .	
		(4)
3.6	Determine the size of α .	
		(3)
		[18]



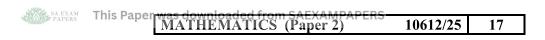
P.T.O.

KEEP THIS PAGE BLANK.

In the diagram, P(-3;4) is the centre of the circle passing through points B, T and the origin. A second circle is drawn, with centre Q and equation $x^2 - 12x + y^2 + 12y + 54 = 0$. Points R and S(3;-9) lie on the circle. AS and AR are both tangents to the circle with centre Q. B is the *x*-intercept of AS.



4.1	Determine the equation of the circle with centre P.	
		(3)
4.2	OT is the diameter of the circle with centre P. Determine the coordinates of T.	
	SA EXAM PAPERS	(3)


	This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2) 10612/25	15
4.3	Calculate the coordinates of Q.	
4.4	Determine the equation of AS in the form $y = mx + c$.	(3)
		(5)
4.5	Identify the type of quadrilateral that ASQR is and substantiate your answer.	_
		_
		(2)

		(4) [20]
		_
		-
		-
		_
		_
		_
4.6	Determine the scale factor <i>k</i> by which the radius of the circle with centre Q should be increased such that the two circles touch once.	

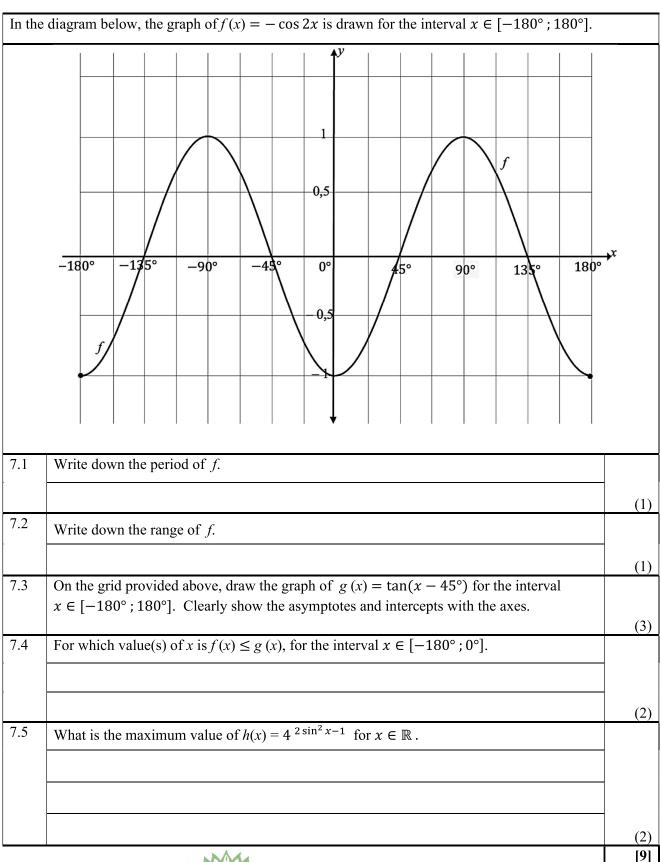
5.1	Given: $\sin \beta = \frac{12}{13}$, where $\tan \beta < 0$.	
	With the aid of a diagram, and without the use of a calculator, determine the value	
	of $\sin 2\beta$.	_
		_
		_
		(4)
5.2	Given: $cos(\alpha - \theta) = cos \alpha cos \theta + sin \alpha sin \theta$	(4)
5.2.1	Use the above identity to deduce that $\sin(\alpha - \theta) = \sin \alpha \cos \theta - \cos \alpha \sin \theta$	
		_
		(3)
5.2.2	Hence, or otherwise, evaluate $\sin 76^{\circ} \cdot \sin 44^{\circ} - \sin 14^{\circ} \cdot \sin 46^{\circ}$	
		_
		_
	MWM SA EYAM DADEDS	(3)

NOW SA EXAM	This Paper	was downloaded from SAEVAMDADEDS		
PAPERS	IIIIs rapei	was downloaded from SAEXAMPAPERS- MATHEMATICS (Paper 2)	10612/25	18

5.3	Given: $f(x) = \sin x$	
	Show that $\frac{f(x+h)-f(x)}{h}$ can be written as $\sin x \left(\frac{\cos h-1}{h}\right) + \cos x \left(\frac{\sin h}{h}\right)$.	
		(4) [14]

6.1	Simplify the following to a single trigonometric term, without the use of a calculator:	
	$\frac{\tan(180^{\circ} - x)\cos(180^{\circ} - x)}{\cos 240^{\circ} \left(\tan^2 y - \frac{1}{\cos^2 y}\right)}$	
		(7)
6.2	Prove the identity: $\frac{\sin 3x}{\sin x \cos x} = \frac{4\cos^2 x - 1}{\cos x}$	
		(5)

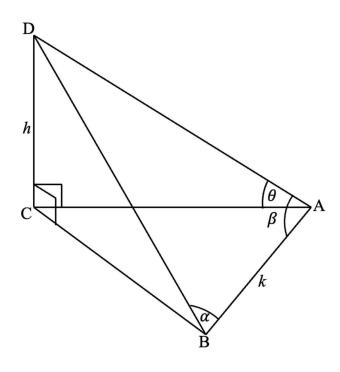
19


MAN SA EYAM	This Donor	was downloaded from CATVAMDAD	EDC	
PAPERS	inis Paper	was downloaded from SAEXAMPAP MATHEMATICS (Paper 2)	10612/25	20
		marriaes (ruper 2)	10012/20	-

6.3	Determine the general solution of $\cos x + 1 = \sin x$.	
		(7)
		[19]

10612/25

21

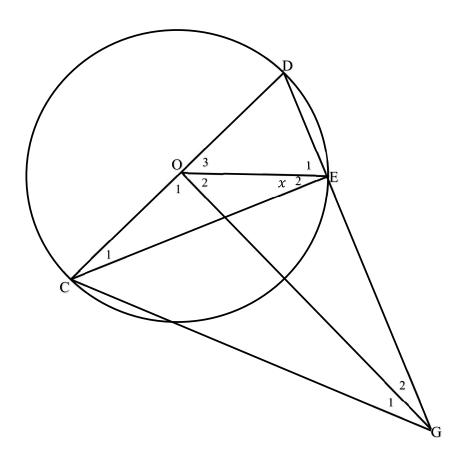

QUESTION 7

In the diagram below, A, B and C lie in the same horizontal plane.

The vertical pole DC is h units and AB = k units.

$$\widehat{CAD} = \theta$$
, $\widehat{BAD} = \beta$ and $\widehat{DBA} = \alpha$.

8.1	Determine the size of \widehat{CDA} in terms of θ .	
	Betermine the size of CB11 in terms of 0.	
		(1)
		(1)
8.2	Determine the length of AD in terms of h and θ .	
	NOON	(2)
	NAX SA EXAM PAPERS	


NAME SA EXAM	This Danon	was downloaded from SAEVAN	IDADEDS	
PAPERS	IIIIs rapei	was downloaded from SAEXAN MATHEMATICS (Paper 2	2) 10612/25	23

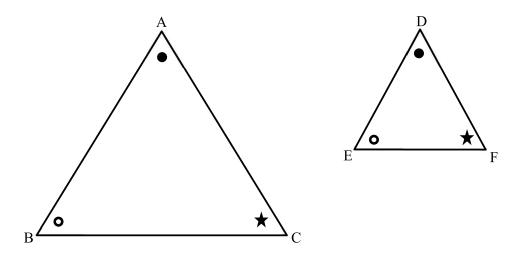
8.3	Show that CD can be written as:	
	, $k \cdot \sin lpha \cdot \sin heta$	
	$h = \frac{k \cdot \sin \alpha \cdot \sin \theta}{\sin(\alpha + \beta)}$	
		(5)
8.4	Calculate the length of the vertical pole CD to the nearest metre, if $k = 95$ m, $\theta = 43.9^{\circ}$, $\beta = 61^{\circ}$ and $\alpha = 32.7^{\circ}$.	
		(2)
		(2) [10]

Proudly South African

NAME SA EXAM	This Paparause downloaded from CAEVAMPADEDS		
PAPERS	This Paper was downloaded from SAEXAMPAPERS—MATHEMATICS (Paper 2)	10612/25	24

In the diagram below, CD is the diameter of the circle with centre O. E is a point on the circle such that DE is produced to G. OE, OG, CE and CG are drawn. Let $\widehat{OEC} = x$ and $\widehat{COG} = 90^{\circ}$.

 (3)


SA EXAM PAPERS

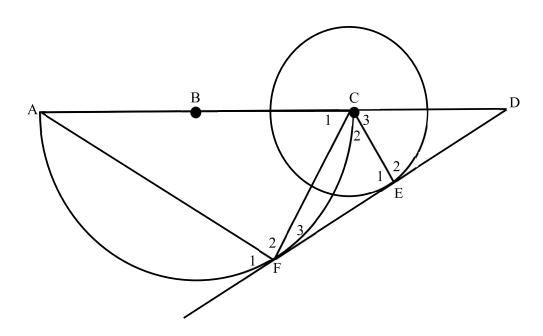
SA EXAM PAPERS	This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2)	10612/25	25
with reasons, T	HREE other angles equal to x .		

9.2	Name, with reasons, THREE other angles equal to x .	
0.2	D	(3)
9.3	Determine the size of \widehat{DOE} in terms of x .	
		(2)
1		[8]

SA EXAM PAPERS

10.1 In the diagram below, $\triangle ABC$ and $\triangle DEF$ are drawn with $\widehat{A} = \widehat{D}$; $\widehat{B} = \widehat{E}$ and $\widehat{C} = \widehat{F}$.

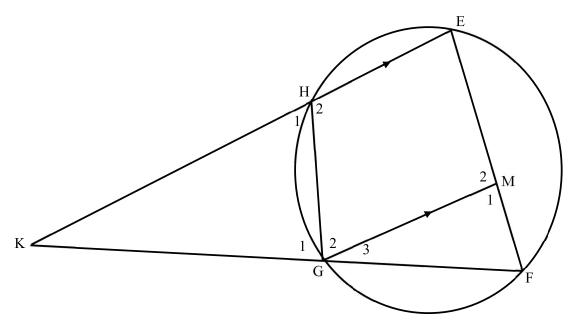
Use the diagram above to prove the theorem that states that if two triangles are equiangular,	
then their corresponding sides are in the same proportion, that is $\frac{DE}{AB} = \frac{DF}{AC}$	
AB AC	
	(6)


KEEP THIS PAGE BLANK.

MAN SA EXAM	This Panaruse downloaded from SAEVAMDADEDS		
PAPERS	This Paper was downloaded from SAEXAMPAPERS—MATHEMATICS (Paper 2)	10612/25	28
	(1 11 11 11 11 11 11 11 11 11 11 11 11 1		

10.2 In the diagram below A, C and F are points on a semi-circle with centre B. A circle with centre C is drawn. The radius of the semi-circle is twice the radius of circle C.

FED is a tangent to both circles at F and E respectively. ABCD is a straight line.


10.2.1	Prove that ΔAFC Δ FEC.	
		. . .
		(5)

NOW SA EXAM	This Paper	was downloaded from SAEVAMDADEDS		
PAPERS	IIIIs rapei	was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2)	10612/25	29

10.2.2	If the radius of the smaller circle is p , determine the following in terms of p :	
(a)	The length of FC	
		_
		_
		(4)
(b)	The length of FD, if it is given that FE = ED	_
		_
		-
		1
		(2)
	>	(3) [18]

In the diagram below, cyclic quadrilateral EFGH is drawn. Chords EH and FG are produced to meet at K. M is a point on EF such that MG \parallel EK. KG = EF.

11.1	Prove that:	
11.1.1	$EF^2 = KE . GH$	
		(6)

	SA EXAM This Paper was downloaded from SAEXAMPAPERS	
	This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2) 10612/25	31
11.1.2	$KG^2 = EM . KF$	
		(3)
11.2	If it is given that $KE = 20$ units, $KF = 16$ units and $GH = 4$ units, calculate the	
	length of EM.	
		(3)
		[12]

NOW SA EXAM	This Danon	was downloaded from S/	EVANDADEDS		
PAPERS	IIIIs rapei	was downloaded from S/ MATHEMATICS (P:	aper 2)	10612/25	32

Additional space	
	_

WALL SAFYAM	This Danar was downloaded from CAEVAMDADEDS	
PAPERS	This Paper was downloaded from SAEXAMPAPERS MATHEMATICS (Paper 2)	10612/25 33
	MATHEMATICS (Laper 2)	10012/23 33

Additional space			

MAN SA FYAM	This Danar was dawnless	dad from CAEVAAADADA	TDC .	
PAPERS	This Paper was downloa MATHE	MATICS (Paper 2)	10612/25	34

Additional space			

SA EXAM PAPERS

FN Oudly South African

TOTAL: 150

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni)$$

$$A = P(1-i)^n \qquad A = P(1+i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}[2a + (n-1)d]$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
 ; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y = mx + c$$
 $y - y_1 = m(x - x_1)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \tan \theta$$

$$(x-a)^{2} + (y-b)^{2} = r^{2}$$

$$\operatorname{In} \Delta ABC: \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^{2} = b^{2} + c^{2} - 2bc.\cos A$$

$$area \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin\alpha \cdot \cos\beta + \cos\alpha \cdot \sin\beta$$

$$\sin(\alpha - \beta) = \sin\alpha \cdot \cos\beta - \cos\alpha \cdot \sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

SA EXAM PAPERS

WYTHEMATICS PAPER 2 (10612)

5052 BEEVARATORY EXAMINATION

