

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

KWAZULU-NATAL PROVINCE

EDUCATION REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

MARKING GUIDELINES

PREPARATORY EXAMINATION

SEPTEMBER 2025

MARKS: 150

SYMBOL	EXPLANATION
MA	Method with accuracy
MCA	Method with consistent accuracy
CA	Consistent Accuracy
Α	Accuracy (Answer)
C	Conversion
S	Simplification
RT	Reading from a table/ graph/ diagram/map
SF	Correct substitution in a formula
O	Opinion/ reason/deduction/example/Explanation
R	Rounding off
F	deriving a formula
AO	Answer only
P	Penalty e.g. for units, incorrect rounding off etc.
NPR	No penalty for correct rounding
NPU	No penalty for omitting unit, but wrong unit is penalised
RCA	Rounding with consistent accuracy

is wanteing Stateliffe Vollsier oP1Apages RS

Proudly South African

This Paper was downloaded from SAEX SQUIPALE 2025 Preparatory Examination

NOTES:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out (cancelled) an attempt to a question and NOT redone the solution,
- mark the crossed out (cancelled) version.
- Consistent accuracy (CA) applies in ALL aspects of the marking guidelines; however, it stops at the second calculation error.
- If the candidate presents any extra solution when reading from a graph, table, layout plan and map, then penalise for every extra item presented.

Quest.				6
Quest.	Solution	Explanation		T & L
1.1.1	C ✓✓RT	2RT correct answer	(2)	M L1 E
1.1.2	A✓✓RT	2RT correct answer	(2)	MP L1 E
1.1.3	G✓✓RT	2RT correct answer	(2)	M L1 E
1.1.4	B✓✓RT	2RT correct answer	(2)	MP L1 E
1.1.5	E✓✓RT	2RT correct answer	(2)	P L1 E
1.2.1	Number of $m\ell = 0.33 \times 1000 \checkmark MA$ = 330 $\checkmark A$	1MA multiplying by 1000 1A correct answer	(2)	M L1 E
1.2.2	Number of cups = $(1,5 \times 1000)$: $250 \checkmark MA$ = $6 \checkmark A$	1MA multiplying by 1000 1MA dividing by 250 1A correct answer		M L1 E
	OR \checkmark MA Number of cups = 1,5 ÷ (250 ÷ 1000) \checkmark MA = 6 \checkmark A	OR 1MA dividing 250 by 1000 1MA dividing 0,25 1A correct answer		
			(3)	
1.2.3	Radius = $11 \div 2\checkmark MA$ = $5.5 \text{ cm} \checkmark A$	1MA dividing by 2 1A correct answer	(2)	MP L1 E
1.2.4	B✓✓A	2A correct answer	(2)	MP Ll E

SA EXAM PAPERS

Proudly South African

SA EXAM PAPERS | This past paper was downloaded from saexampapers.co.za

This Paper was downloaded from SAEX SQUENTER 2025 Preparatory Examination

1.3.1	11 seats√√RT	2RT correct answer	(2)	M
				L1
		Accept 7		E
1.3.2	H9 ✓✓RT	2RT correct answer	(2)	M
				L1
				E
1.3.3	14 seats ✓ ✓ RT	2RT correct answer		M
			(2)	L1
	<u> </u>			Е
1.3.4	✓MA	1MA adding time		M
	Time the show will end = $19:00 + 2$ hours $+(15$ mins $\times 2)$			L1
				E
	= 21:30 ✓ A	1A correct answer		
	= 9:30pm✓A	1A correct time and format	(3)	
			[28]	

Quest.	Solution	Explanation	T & L
2.1.1	The key to the map makes it easy to read, locate roads, landmarks and navigate. $\checkmark \lor O$ OR	2O correct explanation	MP L1 E
	It explains the meaning of the symbols and labels, helping the reader identify landmarks and roads	(2	,
2.1.2	accurately.✓✓O	08.2	27
2.1.2	Between Hilton Hotel and the Workshop ✓✓RT	2RT correct answer	MP L1 E
	OR		
	Opposite Hilton Hotel and the Workshop✓✓RT		
	OR		
	Between the ICC and the Workshop ✓✓RT		
	OR		
	Opposite Sahara Stadium, next to the Hilton Hotel ✓ RT		
	OR		
	Between North Plaza and South Plaza parking Areas ✓ ✓ RT	(2)	e l
2.1.3	Braam Fischer Road✓✓RT	2RT correct answer (2)	MP L1 E
2.1.4	North West✓✓A	2A correct answer (2)	MP L1 E
2.1.5	6,7cm ✓A 6,7 cm = 300 m ✓A	1A measuring accurately 1A concept of scale correct order 1C Conversion 1S Simplification	MP L3 E
	6,7cm = 30 000 cm ✓ C	Accept leeway of 1mm or 0,1 cm	
	1: 4 477,61√S	NPR (4)	
2.1.6	✓ A	1A numerator	P
	$P(\text{North Plaza}) = \frac{1}{5} \times 100\% \checkmark \text{MA}$	1A denominator	L2 M
		1MA multiply by 100%	IVI
	= 20% SA EXA	1CA correct answer M PAPERS (4)	

Copyright Reserved Please Turn Over

This Paper was downloaded from SAEX Preparatory Examination

2.2.1	Time = 3,5 hours		MP L2
	$Speed = \frac{21,1 \text{km}}{3,5} \checkmark SF$	1SF substitution	M
	= 6,03 km/hour ✓CA	1CA answer (2)	
2.2.2	✓✓RT 100m✓ A	2RT correct answer 1A units (3)	MP L1 E
2.2.3	Time = 64 minutes Average Pace = $\frac{64 \text{ minutes}}{21,1 \text{ km}} \checkmark \text{MA}$ = 3,03 minutes/km \checkmark CA	1MA dividing 64 by 21,1 1CA answer (2)	MP L2 M
2.2.4	Altitude at 5km = 75m Altitude at 15km = 175m Change in Altitude = 175m -75m ✓ MA = 100m Altitude increase per km = 100 ÷ 10 ✓ MCA = 10m/km	1MA subtracting heights 1MCA dividing by 10	MP L4 M
	Statement is CORRECT ✓O	10 Conclusion (3)	
2.2.5	Predicted finishers for $2025 = \frac{14934}{16000} \checkmark A \times 17500 \checkmark MA$ $= 16334 \checkmark A$	1A numerator 1A denominator 1MA multiply by 17 500 1A correct answer (4)	P L2 E
2.2.6	The elevation plan shows the height above sea level at a certain distance. OR Helps to prepare runners by knowing the steep climbs/descents to decide if the route matches their fitness level. OR Identifying steep/dangerous areas to avoid	3O correct explanation	MP L2 M
	accidents. ✓ ✓ ✓ O	(3)	
2		[33]	

This Paper was downloaded from SAEX SUPPLIES Preparatory Examination

Quest.	Solution	Explanation		T &L
3.1.1	Perimeter of the frame = $2(418.5 \text{ cm} + 307.2 \text{ cm})\checkmark$ SF	1SF correct substitution		M L2
	= 1451,4 cm ✓ A	1A correct answer		M
	= 1451.4 cm ÷ 100 ✓ C	1C Conversion 1CA answer		
	=14,514 ✓ CA m ✓ A	1A for unit	(5)	
3.1.2	Convert to metres = 20×0.305 = $6.1 \text{m} \checkmark \text{A}$	CA from 3.1.1 1A correct answer		M L3 M
	✓MA			
	Number of lengths required = $14,514 \text{ m} + (3 \times 2,1 \text{ m})$	1MA multiplying 3 by 2,1		
	= 20,814m ÷ 6,1 ✓ MCA	1MCA dividing by 6,1		
	= 3,41 = 4 ✓ R	1R rounding	(4)	
3.1.3	✓ MA Number of PVC sheets = 418,5 cm ÷ (60cm – 5cm) ✓ MCA	1MA subtracting 5	N 2	M L3
	= 7,6 √ CA	1MCA dividing by 55 1CA correct answer		D
	= 8 ✓ R	1R rounding	(4)	

3.2.1	Total length of the garage = $3,65 \text{ m} + 3,65 \text{m} = 7,3 \text{ m} \checkmark \text{A}$	1A for width of the garage		M
	Spaces between the cars = 3×0.7 m = 2.1 m \checkmark A	1A for width of spaces		L3 M
	Width of the car = 7,3 m - 2,1 m = 5,2 m \checkmark A = 5,2m ÷ 2 \checkmark MCA = 2,6m \checkmark CA	1A correct answer 1MCA dividing by 2 1CA answer	(5)	
3.2.2	$✓ MA$ Area of garage = $(3,65m + 3,65m) \times 6,7m \checkmark SF$ $= 48,91m2 \checkmark A$	1MA adding correct values 1SF substitution		M L2 M
		1A answer	(3)	
3.2.3	Convert to metres = $50 \div 100$ = 0.5 m	CA from Q3.2.2 1C dividing by 100		M L4 M
	Area of 1 tile = 0.5 m × 0.5 m = 0.25 $m^2 \checkmark A$	1A area of tile		
	Number of tiles = 48,91 m ² \div 0,25 m ² \checkmark MCA	1MCA for dividing		
	= 195,64√CA	1CA answer		
	Number of boxes = $195,64 \div 8 \checkmark MCA$ = $24,46$	1MCA dividing by 8		
	=25 √ R	1R Rounding	,	
			(6) [27]	

Quest.	Solution	Explanation	T &I
4.1.1	Diameter of Big Circle = 76" Radius of big circle = 76" ≠2 = 38" ✓A	1A correct answer	M L4 M
	✓ MA	1MA subtracting 48	141
	diameter of small circle = 76"-24"-24" = 28" ✓ A	1A correct answer	
	radius of small circle = 28" ÷2= 14" ✓A	1A correct answer	
	Circumference of table $= [(2 \times 3,142 \times 38") + (2 \times 3,142 \times 14")] \div 2 + (76" - 28")\checkmark \text{ SF}$ $= 211,384" \checkmark \text{ CA}$	1SF substitution 1CA correct Answer	
	OR	OR	
	Diameter of Big Circle = 76 ^{°°} Radius of big circle = 76 ^{°°} ÷2 = 38 ^{°°} ✓A	1A correct answer	
	✓ MA diameter of small circle = (76" ÷2) -24" = 28" ✓ A	1MA dividing by 2 and subtracting 24	
	radius of small circle = 28" ÷2= 14" ✓A	1A correct answer 1A correct answer	
	Circumference of table $= [(2 \times 3,142 \times 38") + (2 \times 3,142 \times 14")] \div 2 + (76" - 28") \checkmark SF$	1SF substitution	
	= 211,384" ✓ CA	1CA correct Answer (6)	

4.1.2	Radius of Big Circle = 38" × 2.54 ✓ C	CA from Q4.1.1	M L4
	= 96,52 cm	1C Conversion	D D
	Radius of small circle = 14 " × 2,54		
	= 35,56 cm		
	Area = area of big circle - area of small circle		
	Area of big circle = $3,142 \times (96,52 \text{cm})^2 \checkmark \text{ SF}$	1SF substitution	
	$= 29\ 271,2188768\ cm^2$		
	Area of small circle = $3,142 \times (35,56 \text{cm})^2$ \checkmark SF	1SF substitution	
	= 3973,1017312cm ²		
	Area = (area of big circle – area of small circle) ÷ 2		
	\checkmark MCA =(29 271,2188768 cm ² -3973,1017312cm ²) ÷ 2 \checkmark MA	1MCA for subtracting	
	$= 12 649,06 \text{ cm}^2$	1MA for dividing by 2	
	Convert to $m^2 = 12.649,06 \div 100^2 \checkmark C$		
	= 1,26 \(\sigma \)CA	1C for conversion	
	Claim is INCORRECT✓O	1CA answer	
	OR	10 Opinion OR	
	Radius of Big Circle = 38 " × 2,54 \checkmark C = $96,52$ cm ÷ 100 \checkmark C	1C Conversion	
	=0.9652m	1C Conversion	
	Radius of small circle = 14 " × 2,54		
	$= 35,56 \text{ cm} \div 100$		
	=0.3556m		
	Area = area of big circle – area of small circle		
	Area of big circle = $3,142 \times (0,9652\text{m})^2 \checkmark \text{ SF}$	1SF Substitution	
	$= 2,9271218877 \text{ m}^2$		
	Area of small circle = $3,142 \times (0.3556 \text{m})^2$ \checkmark SF	1SF substitution	
	= 0.7973101731m ²	PERS	

Proudly South African

		1	
	Area · (area of big circle – area of small circle) ÷ 2		
	✓MCA	1MCA subtracting	
	= $(2,9271218877 \text{ m}^2 - 0,3973101731\text{m}^2) \div 2 \checkmark \text{MA}$	1MA dividing by 2	
	= 1,26 √ CA	(Sec. 1971)	
	Claim is INCORRECT√O	1CA answer	
		10 Opinion	
		(8)	
4.2.1	Number of litres = 32×0.03	14.6	M
	= 0,96ℓ ✓ A	1A for correct litres	L3 D
	Convert to $cm^3 = 0.96 \times 1000 \checkmark MA$ = 960 cm ³	1MA multiplying by 1000	
	$960 \text{cm}^3 = 3.142 \times \text{r}^2 \times 19 \checkmark \text{SF}$	1SF correct substitution	
	960 cm ³ ÷ (3,142 ×19 cm) = r^2 ✓ MA	1MA changing subject of the formula	
	$\sqrt{16,08} = r^2 \checkmark MCA$	1MCA square root	
	$4.01 \text{ cm} = r \checkmark \text{CA}$	1CA answer	
	Diameter = 4,01cm ×2 ✓ MCA	1MCA multiply by 2	
	= 8,02cm ✓ CA	1CA answer (8)	
4.2.2		CA Q4.2.1	M
	Width = 8,02cm +2cm ✓ MCA	1MCA adding 2	L2
	=10,02cm√CA	1CA answer	Е
	Height =19cm+3cm +2cm ✓MCA	1MCA adding 5cm	
	= 24cm√CA	1CA answer (4)	
4.2.3	Surface Arca Rectangular Prism =	CA from Q4.2.2	M
	✓SF		L3 M
	2(10,02cm × 10,02cm) + 2(10,02cm ×	1SF correct substitution	ut If
	24cm) + 2(10,02cm× 24cm) ✓SF	1SF substitution	
	- 1162,72 cm ² ✓ CA	1CA answer	
	Convert to $m^2 = 1162,72 \text{ cm}^2 \div 100^2 \checkmark \text{ C}$	1C dividing by 10 000	
	= 0,12m²√CA	1CA answer	
	ANOM 4	(5)	
	SA EXAM PA	PERS [31]	

This Paper was downloaded from SAEX Preparatory Examination

Quest.	Solution	Expla	anation		T & L
5.1.1	6335miles:10 228km✓ RT		or both correct value	es	MP
	✓ R		plifying		Ll
	0,619: 1 √ S	1R Ro	unding		D
	OR		OR		
			OK		
	6335miles:10 228km√ RT ✓ R	1RT fo	1RT for both correct values		
	1: 1,615 ✓S	1S sim	plifying		
	1.1,013	1R Ro			
				(3)	
.1.2	9 countries ✓✓ RT	2RT co	orrect answer		MP
				(2)	L1 E
5.1.3	Bar/Line/Linear/graphic scale✓✓ A	2A cor	rect answer	(2)	MP
5.1.5	Bull Ellie Ellie al graphie seale	2/1 001	reet answer		L1
				(2)	E
5.1.4	Scale 4,4 cm = $1000 \text{ km} \checkmark \text{A}$	1A	measuring scale		MP L3
	Distance on map = 17,2 cm ✓ A	1A	measuring		M
		111	distance		
	✓MA ✓MCA				
	Actual Distance: = $(17.2 \text{ cm} \times 1000) \div 4.4$	1MA	multiplying by 10	00	
	= 3 909,09km ✓CA	1MCA	dividing by		
	o sos,os min	4,41C	A answer		
	OR				
		551170	OR		
	Scale 44 mm = 1000 km ✓ A	1A	measuring scale		
	Distance on map = 172 mm ✓A	1A	measuring		
	✓MA ✓MCA		distance		
	Actual Distance: = $(172 \text{ mm} \times 1 000) \div 44$	1MA n	nultiplying by 1000		
	controllection designate executable from the factor of the		dividing by 44		
	= 3 909,09km ✓CA	161			
		1CA aı		2000 100	
			t leeway of 1mm o	r 0,1	
		cm	NPR		
			III K	(5)	
5.1.5	The distance measured on the map is an	2O cor	rect explanation	(5)	MP
	approximation or straight-line measurement while the		*		L4
	real road distance is longer due to bends, detours and				E
	route variations. VVO			(2)	

This Paper was downloaded from SAEX SAN Property Examination

5.1.6	Time = 10 228 km ÷ 90 km/hour ✓ MA	1MA dividing by 90	MP
	112 (41) (4		L3
	= 113,64 hours ✓ A	1A correct answer	M
	Time in days = 113,64 : 12 ✓ MCA	1MCA dividing by 12	
	= 9,47 days ✓ CA	1CA answer	
	= 10 √ R	1R rounding	
		(5)	
5.1.7	$^{0}\text{C} = \frac{5}{9} (98^{0}\text{F} - 32) \checkmark \text{SF}$	1SF substitution	MP
	=36,67°C ✓A	1A correct answer	L2 M
	=37°C ✓ R	1R rounding (3)	
5.2.1	✓ C 64 000 000: 101 478 000 ✓ A	1C conversion 1A correct values and order	MP L2
	✓S		M
	1:1,58559375	1S Simplification	
		NPR	
		(3)	
5.2.2	✓RT	1RT correct value	MP
	Number of people per km ² = $101 478 000 \div 1010 408 \checkmark MA$ = $100,4326965$	1MA dividing by 1 010 408	L2 M
	$= 100 \checkmark A$	1A correct answer	IVI
		(3)	
5.2.3	√MA	1MA dividing	MP
	Number of times bigger = $1\ 221\ 037$ km $\div\ 1\ 010\ 408$ \checkmark RT	1RT correct value	L4 M
	= 1,208		141
	The claim is CORRECT ✓O	10 Opinion	
		(3)	
		[31]	

TOTAL MARKS: 150

