

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

DEPARTMENT OF **EDUCATION**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1 JUNE 2025

> 150 MARKS:

3 hours TIME:

This question paper consists of 9 pages and 1 information sheet.

SA EXAM PAPERS

Proudly South African

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 8 Questions.
- 2. Answer ALL the questions.
- Number your answers correctly according to the numbering system used in this question paper.
- Clearly show ALL calculations, diagrams and graphs that you have used in determining your answers.
- 5. Answers only will NOT necessarily be awarded full marks.
- 6. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 7. If necessary, answers should be rounded off to **TWO** decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. Information sheet with formulae is included at the end of the question paper.
- 10. Write neatly and legibly.

Mathematics/P1

This Paper was glownloaded from SAEXAMPADE June 2025 NSC

QUESTION 1

Solve for x: 1.1

$$1.1.1 \quad x^2 - 121 = 0 \tag{3}$$

1.1.2
$$x^2 + 3 = 5x$$
 (Correct to **TWO** decimal places) (4)

1.1.3
$$(x-1)(x-5) \le 12$$
 (4)

$$1.1.4 2^x + 2^{x+2} = 40 (4)$$

1.1.5
$$\sqrt{10-x^2}-x+2=0$$
 (5)

1.2 Solve simultaneously for x and y:

$$y - x = 2$$

$$x^2 + 2xy - 4 = 0$$
(5)

Given: f(x) = x(x+a) - b and $g(x) = 2x^2 + b - dx$, where $a \ne 0$ and $b \ne 0$. 1.3 If x-a is a factor of f(x) and if x-b is a factor of g(x),

prove that:
$$d-1=4a^2$$
 (5)

[30]

oast paper was downloaded from

Mathematics/P1 This Paper was downloaded from SAEXAMPAPER popoDoE/June 2025

QUESTION 2

2.1	The 19th term	of an arithmetic sequence is 11, while the 31st term is 5.	
	2.1.1	Determine the first 3 terms of the sequence.	(5)
	2.1.2	Determine the general term of the sequence.	(2)
	2.1.3	Calculate the sum of the first 81 terms.	(3)
2.2	Given the quadratic pattern: 2; 5; 10; 17; 26;		
	2.2.1	Write down the next TWO terms of the pattern.	(2)
	2.2.2	Show that $T_n = n^2 + 1$ is the general term of the quadratic pattern.	(4)
	2.2.3	Determine the term of the pattern that has the value of 290.	(3)
	2.2.4	Between which two consecutive terms of the quadratic pattern	(5)
		will the first difference be 25?	(5)
			[24]

QUESTION 3

Square A has sides 2cm each. The length of the side of square A is half the length of the side of square B, and the length of the side of square C is double the length of the side of square B.

3.1	Determine the length of each diagonal of square A.	
3.2	Calculate the area of square C.	(2)
3.3	Show that the sum of the areas of the first 10 squares is 1 398 100	
3.4	Show that the length of each diagonal of the n^{th} square is $\sqrt{2}(2)^n$.	(4)
3.5	Determine the square which has a diagonal of 256√2 cm.	(4)

SA EXAM PAPERS Proudly South African

[15]

QUESTION 4

The sketch below shows the graph of $g(x) = x^2 - 3x - 10$. Points A and C are the x-intercepts and T is the turning point of g. Graph f cuts g at points B and C respectively. Point E is symmetrical to point D on the graph of g.

- 4.1.1 Determine the coordinates of the turning point T. (4)

 Write down the range of g. (2)
- 4.1.2 Write down the range of g. (2)
- 4.1.3 Determine the coordinates of C. (2)
- 4.1.4 Determine the equation of line BC. (4)
- 4.1.5 Determine the coordinates of E, if E is symmetrical with D. (4)
- 4.1.6 For what value(s) of x will f(x) > g(x). (2)
- 4.1.7 For what value(s) of x will $x^2 3x 10$ be positive? (2)
- 4.2 Given: $f(x) = \frac{2}{x+1}$
 - 4.2.1 Write down the equations of the asymptotes. (2)
 - 4.2.2 Sketch the graph of f showing intercept with the axes and the asymptotes. (3)
 - 4.2.3 If f is translated to g and $g(x) = \frac{2}{x-2} + 2$, discuss the translation. (2)

QUESTION 5

The sketch below represents the graph of $f(x) = b^x + q$ which intersects the y - axis at (0; 1) and passes through the point (2; 9).

- 5.1 Show that the equation of $f(x) = 3^x$ (3)
- Determine the equation of $f^{-1}(x)$. 5.2 (2)
- Sketch the graph of $f^{-1}(x)$. Show all intercepts with the axes. 5.3 (3)
- Given that g(x) = 2x 1, calculate the value of P if: 5.4

$$P = \sum_{x=-2}^{5} f(x) - \sum_{x=1}^{10} g(x)$$
 (5)

[13]

SA EXAM PAPERS

Mathematics/P1

This Paper was downloaded from SAEXAMPAPERS
LimpopoDoE/June 2025
NSC

QUESTION 6

- 6.1 Calculate the derivative of $f(x) = 3x^2 2x$ from first principles. (5)
- 6.2 Determine:

6.2.1
$$\lim_{h \to 3} \frac{2x^2 - 11x + 15}{3 - x} \tag{3}$$

6.2.2
$$g'(x)$$
 if $g(x) = x^4 - \frac{4}{x}$ (3)

6.2.3
$$\frac{dy}{dx}$$
 if $y = (x+3)(3-x)$ (3)

$$6.2.4 D_x \left[\frac{3\sqrt{x} - 4}{\sqrt{x}} \right] (3)$$

Determine the equation of the tangent to $f(x) = x^2 - 2x + 3$ at x = -2. (4)

[21]

Mathematics/P1 This Paper was downloaded from SAEXAMPAPERS E/June 2025

QUESTION 7

The sketch below is defined by $f(x) = x^3 - 5x^2 - 8x + 12$. Points A, B and C (6;0) 7.1 are the x – intercepts and T is the y – intercept. D and E are the turning points.

- (4) Determine the coordinates of E. 7.1.1
- (1) Write down the equation of the tangent, ME to f. 7.1.2
- Write down the length of TM if M is on the y-axis. (2) 7.1.3
- p(x) is a cubic function with the following conditions: 7.2
 - $p(x) = ax^3 + bx^2 + cx + d$
 - a < 0
 - p(0) = 0
 - p'(1) = 0 and p'(3) = 0

Use the given information to draw a neat sketch of graph, showing all intercepts and the turning points. (4)

[11]

Mathematics/P1 This Paper was downloaded from SAEXAM Importo DoE/June 2025

QUESTION 8

The figure represents a large stained glass window frame. The upper part of the frame is a semi-circle. The lower part of the frame is a rectangle with sides of 2x metres and y metres as shown. The perimeter of the window frame is 30 metres.

8.1 Show that:
$$y = \frac{30 - x(2 + \pi)}{2}$$
 (4)

8.2 Calculate the value of x for which the area of the window frame will be a maximum.

(Leave answer in terms of
$$\pi$$
) (5)

TOTAL: 150 This Paper was downloaded from SAEXAMPAPERS DoE/June 2025 NSC

QUESTION 7

The sketch below is defined by $f(x) = x^3 - 5x^2 - 8x + 12$. Points A, B and C (6;0) 7.1 are the x – intercepts and T is the y – intercept. D and E are the turning points.

- Determine the coordinates of E. (4) 7.1.1
- Write down the equation of the tangent, ME to f. (1) 7.1.2
- Write down the length of TM if M is on the y-axis. (2) 7.1.3
- p(x) is a cubic function with the following conditions: 7.2
 - $p(x) = ax^3 + bx^2 + cx + d$
 - a < 0
 - p(0) = 0
 - p'(1) = 0 and p'(3) = 0

Use the given information to draw a neat sketch of graph, showing all intercepts and the turning points.

(4)

[11]

LimpopoDoE/June 2025

Mathematics/P1 This Paper was downloaded from SAEXAMPAPERS

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r - 1} ; \quad r \neq 1 \qquad S_{\infty} = \frac{a}{1 - r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i} \qquad f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

In AABC:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \Delta ABC = \frac{1}{2}ab \cdot \sin C$$

$$\sin(\alpha+\beta) = \sin\alpha.\cos\beta + \cos\alpha.\sin\beta$$

$$\sin(\alpha+\beta) = \sin\alpha.\cos\beta + \cos\alpha.\sin\beta$$

$$\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\bar{x} = \frac{\sum fx}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sin(\alpha-\beta) = \sin\alpha.\cos\beta - \cos\alpha.\sin\beta$$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

SA EXAM PAPERS

Proudly South African