

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

MATHEMATICS P2

PREPARATORY EXAMINATION

SEPTEMBER 2025

MARKING GUIDELINES

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Copyright Reserved

These marking guidelines consist of 14 pages.

Please turn over

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed-out version.
- Consistent accuracy applies in ALL aspects of the Marking Guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

	GEOMETRY		
S	A mark for a correct statement		
3	(A statement mark is independent of a reason)		
D	A mark for the correct reason		
R	(A reason mark may only be awarded if the statement is correct)		
S/R	Award a mark if statement AND reason are both correct.		

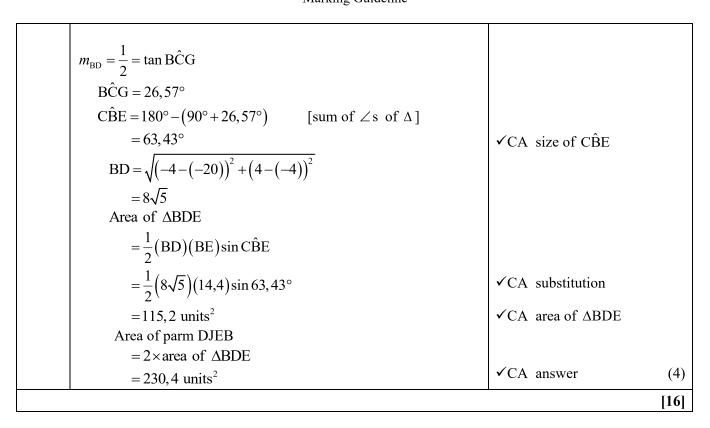
QUESTION 1

1.1	a = 169,60	\checkmark A value of a
	b = -0.90	\checkmark A value of b
	$\hat{y} = 169,60 - 0,90x$ Answer only: Full marks	✓CA answer
		(3)
1.2	r = -0.93	✓A answer
		(1)
1.3	A strong negative correlation	✓CA answer
		(1)
1.4	y = 169,60 - 0,90(33)	✓CA substitution
	y = 139,90 m	
	$y \approx 140 \text{ m}$ Answer only:	✓CA answer
	$y \approx 140 \text{ m}$ Full marks	(2)
1.5	$-0.90 \times 15 = -13.50$	✓CA substitution
	Decrease in legibility distance per 15 years ≈14 m	✓CA answer
	Penalise only once for incorrect rounding:	(2)
	Only in question 1.4 or 1.5.	
		[9]

Copyright Reserved Please turn over

This Paper was downloaded from SAEXANAZAV September 2025 Examination GRADE 12 Marking Guideline

QUESTION 2


2.1	41 58,3 69,5 76,2 88	✓A minimum and maximum ✓A Q₂ (accept 69 – 70)
	40 50 60 70 80 90	\checkmark A Q ₁ (accept 58 – 58,5) and Q ₃ (accept 75,5 – 76,5)
2.2	skewed to the left	✓CA answer (1)
2.3	skewed to the left	✓CA answer (1)
2.4.1	12,63	✓A answer (1)
2.4.2	mean = 63,93	✓A mean
	$(\text{mean} - \sigma; \text{mean} + \sigma) = (51,30; 76,56)$	✓CA mean – σ
		✓CA mean + σ
	6 trees have heights outside 1 standard deviation from the mean	✓CA answer
		(4)
		[10]

3.1	$m_{\rm BG} = \frac{0 - 4}{6 - \left(-4\right)}$	✓A substitution in gradient formula	
	$=\frac{-2}{5}$	✓CA answer	(2)
3.2	Equation of DF: $5y+2x+60=0$		
	5y = -2x - 60		
	$y = \frac{-2}{5}x - 12$	$\checkmark A y = \frac{-2}{5}x - 12$	
	BG and DF have equal gradients ($m_{BG} = m_{DF} = \frac{-2}{5}$)	$\checkmark A m_{\rm BG} = m_{DF} = \frac{-2}{5}$	
	Therefore BG DF.	3	(2)
3.3	D is the point of intersection of AD and DF.		
	$\therefore \frac{1}{2}x + 6 = \frac{-2}{5}x - 12$	✓CA equating	
	5x + 60 = -4x - 120		
	x = -20	\checkmark CA <i>x</i> -coordinate	
	$y = \frac{1}{2}(-20) + 6$	✓CA substitution	
	= -4 D(-20;-4) SA EXAM PAPE Proudly South African		(4)

This Paper was downloaded from SAEXAN September 2025 Examination GRADE 12 Marking Guideline

	Substitute in the equation of DF:		
	$y = \frac{-2}{5}(-4)-12$	✓CA substitution	
	$=\frac{-52}{5}=-10,4$	✓CA <i>y</i> -value	
	$\therefore BE = 4 - (-10, 4)$	✓CA subtraction	
	=14,4 units	✓CA answer	(4)
	OR	OR	
	5y + 2x + 60 = 0	✓ A substitution	
	5y + 2(-4) + 60 = 0		
	5y = -52		
	y = -10,4	✓CA y-value	
	$\therefore BE = 4 - (-10, 4)$	✓CA subtraction	
	=14,4 units	✓CA answer	(4)
3.5	x-value at D – (-4)		
	=-20-(-4)=-16		
	∴ Height of $\triangle BDE = 16$ units	✓CA height of ∆BDE	
	Area of ΔBDE	=16 units	
	$= \frac{1}{2} \times BE \times height$		
	$=\frac{1}{2}\times14,4\times16$	✓CA substitution	
	$=115,2 \text{ units}^2$	✓CA area of ∆BDE	
	Area of parm DJEB		
	$=2\times$ area of \triangle BDE		
	$= 230,4 \text{ units}^2$	✓CA answer	(4)
	OR	OR	
	x-value at D – $\left(-4\right)$		
	=-20-(-4)=-16		
	∴ Height of parm DJEB=16 units	✓CA height of parm DJE	B
	Area of parm DJEB	=16 units	
	$=$ BE \times height	✓A formula	
	$=14,4\times16$	✓CA substitution	
	$= 230,4 \text{ units}^2$	✓CA answer	(4)
	OR	OR	

4.1.1	M(-3;4)	✓A answer
(a)		(1)
4.1.1	$radius = \sqrt{26} = 5{,}10 \text{ units}$	✓A answer
(b)		(1)
4.1.2	$m_{\text{tangent}} = -\frac{1}{5}$	
	$\therefore m_{\text{diameter}} = 5$	✓A gradient of
	Substitute m_{diameter} and $M(-3; 4)$:	diameter
	$4 = 5\left(-3\right) + c$	✓CA substitution
	$\therefore c = 19$	
	y = 5x + 19	✓CA answer
4.1.2	(2)2 (1)2 2 5	(3)
4.1.3	$(x+3)^2 + (y-4)^2 = 26$	
	$(x+3)^2 + (5x+19-4)^2 = 26$	✓CA substitution
	$x^2 + 6x + 9 + 25x^2 + 150x + 225 = 26$	✓CA simplification
	$26x^2 + 156x + 208 = 0$	1
	$x^2 + 6x + 8 = 0$	✓CA standard form
	(x+4)(x+2) = 0	
	x = -4 or $x = -2$	✓CA <i>x</i> -values
	y = -1 or $y = 9$	✓CA <i>y</i> -values
	M (+4:SA EXAM PAPERS	✓CA answer
		(6)
	Proudly South African	

This Paper was downloaded from SAEXAN September 2025 Examination GRADE 12 Marking Guideline

4.1.4	Substitute R $\left(-4;-1\right)$ in $y=-\frac{1}{5}x+k$:		
	$-1 = -\frac{1}{5}(-4) + k$	✓CA substitution	
	$k = -1 - \frac{4}{5} = -\frac{9}{5}$	A	
	$\kappa = -1 - \frac{1}{5} = -\frac{1}{5}$	✓CA answer	(2)
4.1.5	Let the \angle of inclination of QRST = θ		
	$\tan \theta = m_{ m QRST}$	1	
	$=-\frac{1}{5}$	\checkmark A $\tan \theta = -\frac{1}{5}$	
	$\theta = 180^{\circ} - 11,31^{\circ} = 168,69^{\circ}$		
	$\hat{OQS} = 180^{\circ} - 168,69^{\circ} = 11,31^{\circ}$	✓A OQS=11,31°	
	$\therefore \hat{OQS} = \hat{OWV}$	√A OQS=OŴV	
	WVSQ is a cyclic quadrilateral		
4.2	[converse: \angle s in the same segment]	✓CA reason	(4)
7.2	$x^{2} + y^{2} + 4x\cos\theta + 8y\sin\theta + 3 = 0$ $= x^{2} + 4x\cos\theta + (2\cos\theta)^{2} + y^{2} + 8y\sin\theta + (4\sin\theta)^{2} = -3 + 4\cos^{2}\theta + 16\sin^{2}\theta$	✓ A completing the squ	uoro
	$= (x + 2\cos\theta)^2 + (y + 4\sin\theta)^2 = -3 + 4\cos^2\theta + 16\sin^2\theta$	A completing the squ	uare
		\checkmark A expression for r^2	
	$= -3 + 4\cos^2\theta + 16\sin^2\theta$ $= -3 + 4(1 - \sin^2\theta) + 16\sin^2\theta$	A expression for 7	
	$=1+12\sin^2\theta$		
	$0 \le \sin^2 \theta \le 1$ for all values of θ	$\checkmark A \sin^2 \theta \le 1$	
	$\therefore r^2 = 1 + 12\sin^2\theta \le 13 \text{ for all values of } \theta$	\checkmark A $r^2 \le 13$	
	and $\therefore r \le \sqrt{13}$ for all values of θ		(5)
	O.D.		(-)
	OR	OR	
	$x^2 + y^2 + 4x\cos\theta + 8y\sin\theta + 3 = 0$		
	$= x^{2} + 4x\cos\theta + (2\cos\theta)^{2} + y^{2} + 8y\sin\theta + (4\sin\theta)^{2} = -3 + 4\cos^{2}\theta + 16\sin^{2}\theta$	✓ A completing the squ	uare
	$= (x + 2\cos\theta)^2 + (y + 4\sin\theta)^2 = -3 + 4\cos^2\theta + 16\sin^2\theta$		
	$r^2 = -3 + 4\cos^2\theta + 16\sin^2\theta$	\checkmark A expression for r^2	
	$=-3+4\cos^2\theta+16\left(1-\cos^2\theta\right)$		
	$=13-12\cos^2\theta$		
	$0 \le \cos^2 \theta \le 1$ for all values of θ	$\checkmark A \cos^2 \theta \ge 0$	
	$\therefore r^2 = 13 - 12\cos^2\theta \le 13 \text{ for all values of } \theta$	\checkmark A $r^2 \le 13$	
	and $\therefore r \le \sqrt{13}$ for all values of θ		(5)
			[22]

5.1.1	$y^{2} = r^{2} - x^{2}$ [Pythagoras] $= 1^{2} - k^{2}$ $y = \sqrt{1 - k^{2}}$ $\sin 344^{\circ}$	$\checkmark A y = \sqrt{1 - k^2}$
	$=-\sin 16^{\circ}$	✓A -sin16°
	$=-\sqrt{1-k^2}$	✓CA answer
		(3)
	OR	
	sin 344°	OR
	$=-\sin 16^{\circ}$	✓A -sin16°
	$=-\sqrt{\sin^2 16^\circ}$	
	$=-\sqrt{1-\cos^2 16^\circ}$	$\checkmark A -\sqrt{1-\cos^2 16^\circ}$
	$=-\sqrt{1-\cos^2 16^\circ}$	✓CA answer
	$=-\sqrt{1-k^2}$	(3)
5.1.2	tan 106°	
	$=\tan\left(180^\circ - 74^\circ\right)$	\checkmark A tan $(180^{\circ} - 74^{\circ})$
	$=$ $-\tan 74^{\circ}$	✓A -tan 74°
	$=-\frac{k}{\sqrt{1-k^2}}$	
	$\sqrt{1-k^2}$	✓CA answer (3)
	OR	
	OK	OR
	tan 106°	
	$=\frac{\sin 106^{\circ}}{\cos 1000}$	$\checkmark A \frac{\sin 106^{\circ}}{\cos 106}$
	cos106	COSTUD
	$=\frac{\cos 16^{\circ}}{\cos 16^{\circ}}$	$\checkmark A \frac{\cos 16^{\circ}}{\cos 16^{\circ}}$
	$-\sin 16$	-sin16
	$=\frac{k}{\sqrt{1-k^2}}$	✓CA answer
	-V1-κ	(3)
5.1.3	$\cos 16^\circ = 2\cos^2 8^\circ - 1$	$\checkmark A \cos 16^\circ = 2\cos^2 8^\circ - 1$
	$2\cos^2 8^\circ = \cos 16^\circ + 1$	200160 + 1
	$\cos^2 8^\circ = \frac{\cos 16^\circ + 1}{2}$	$\checkmark A \cos^2 8^\circ = \frac{\cos 16^\circ + 1}{2}$
		2
	$\cos 8^{\circ} = \sqrt{\frac{\cos 16^{\circ} + 1}{2}}$	
	·	(0)
	$=\sqrt{\frac{k+1}{2}}$	✓CA answer (3)
	1 -	1 (3)

This Paper was downloaded from SAEXAN September 2025 Examination GRADE 12 Marking Guideline

5.2	[200 + 1) [top (200 + 1) - 2 (000 + 1) + 2 (100 + 1) + 2	
5.2	$\cos^{2}(180^{\circ} + x) \left[\tan(360^{\circ} - x) \cdot \cos(90^{\circ} + x) + \sin(x - 90^{\circ}) \cdot \cos 180^{\circ} \right]$	2
	$=(-\cos x)^{2}\left[-\tan x\sin x+(-\cos x)1\right]$	$\checkmark A \left(-\cos x\right)^2 \checkmark A - \tan x$
	$\int_{2}^{\infty} \sin x$	$\checkmark A - \sin x \checkmark A (-\cos x)1$
	$= \cos^2 x \left[\frac{\sin x}{\cos x} \cdot \sin x + \cos x \right]$	$\checkmark A \frac{\sin x}{\cos x}$
	$=\sin^2 x \cos x + \cos^3 x$	$\cos x$
	$=\cos x \left(\sin^2 x + \cos^2 x\right)$	✓CA common factor
	$=\cos x$	✓CA answer
		(7)
5.3.1	$\frac{\cos 3\theta + \cos 7\theta}{5\theta}$	
	$\cos 5\theta$ $\cos (5\theta - 2\theta) + \cos (5\theta + 2\theta)$	$\cos(5\theta-2\theta)+\cos(5\theta+2\theta)$
	$= \frac{\cos(5\theta - 2\theta) + \cos(5\theta + 2\theta)}{\cos 5\theta}$	
	$= \frac{\cos 5\theta \cdot \cos 2\theta + \sin 5\theta \cdot \sin 2\theta + \cos 5\theta \cdot \cos 2\theta - \sin 5\theta \cdot \sin 2\theta}{\cos 5\theta \cdot \cos 2\theta - \sin 5\theta \cdot \sin 2\theta}$	\checkmark A expanding $\cos(5\theta - 2\theta)$
	$\cos 5\theta$	\checkmark A expanding $\cos(5\theta + 2\theta)$
	$=\frac{2\cos 5\theta \cdot \cos 2\theta}{\cos 5\theta}$	\checkmark A $\frac{2\cos 5\theta.\cos 2\theta}{\cos 5\theta}$
	$=2\cos 2\theta$	$\cos 5\theta$
7.2.2	0.00.50	(4)
5.3.2	$\theta = 22.5^{\circ}$	4
	$2\cos 2\theta = 2\cos(2\times22,5^{\circ})$	\checkmark A $\theta = 22,5^{\circ}$
	$= 2\cos 45^{\circ}$	✓A 2 cos 45°
	$=2\left(\frac{1}{\sqrt{2}}\right)=\sqrt{2}$	✓A answer
	$(\sqrt{2})$	(3)
5.4	$(4\sin 3x + 1)(\sin x - 5\cos x) = 0$	
	$\therefore 4\sin 3x + 1 = 0 \qquad \text{or} \qquad \sin x - 5\cos x = 0$	✓ A both equations
	$\sin 3x = -\frac{1}{4} \qquad \text{or} \qquad \sin x - 5\cos x = 0$	$\checkmark A \sin 3x = -\frac{1}{4}$
	$ref. \angle: 14,48^{\circ} \qquad \frac{\sin x}{\sin x} = 5$	\checkmark A $\tan x = 5$
	$ref. \angle : 14,48^{\circ} \qquad \frac{\sin x}{\cos x} = 5$	✓CA 64,83°+k.120° or
	$3x = 194,48^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$ $\tan x = 5$	$115,17^{\circ}+k.120^{\circ}$
	$x = 64,83^{\circ} + k.120^{\circ}, k \in \mathbb{Z}$ ref. \angle : $78,69^{\circ}$ or $x = 78,69^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$)-···
	or $x = /8,69^{\circ} + k.180^{\circ}, k \in \mathbb{Z}$ $3x = 345,52^{\circ} + k.360^{\circ}, k \in \mathbb{Z}$ OR	✓CA 78,69°+k.180° OR
	$x = 115,17^{\circ} + k.120^{\circ}, \ k \in \mathbb{Z}$ $x = 78,69^{\circ} + k.360^{\circ}, \ k \in \mathbb{Z}$	$78,69^{\circ} + k.360^{\circ}$ or
	or	258,69° + k.360°
	$x = 258,69^{\circ} + k.360^{\circ}, \ k \in \mathbb{Z}$	\checkmark A $k \in Z$
		(6)
		[29]

This Paper was downloaded from SAEXAN September 2025 Examination GRADE 12 Marking Guideline

6.1		
	y (30°;1) g (30°;1) y (30°;1) y (30°;1) y (30°;1) y (30°;1) (210°;-0,87) (210°;-1)	✓ A x-intercepts ✓ A turning points ✓ A endpoints ✓ A shape
		(4)
6.2.1	360°	✓A answer (1)
6.2.2	$y \in [-5; -1]$	✓✓A A answer
	OR	OR (2)
	$-5 \le y \le -1$	✓ A A answer (2)
6.2.3	2 solutions	✓CA answer (1)
6.3	g(x)-k=1	
	g(x)-1=k	
	Critical values: -2 and 0	✓A critical values
	No real roots when: $k > 0$ or $k < -2$	\checkmark A $k > 0$
		\checkmark A $k < -2$
6.4	$h(x) = -\sin x$	(3) ✓✓A A answer
		(2)
		[13]

7.1	DC	DC
'.1	$\frac{DC}{DA} = \cos 28^{\circ}$	\checkmark A $\frac{DC}{DA} = \cos 28^{\circ}$
		DA
	$DA = \frac{DC}{\cos 28^{\circ}}$	
	$DA = 16,99 \mathrm{m}$	✓ A length of DA
	$AB^2 = AD^2 + DB^2 - 2AD.DB.\cos A\hat{D}B$	✓ A applying cosine rule in
		triangle ABC
	$AB^2 = 16,99^2 + 20^2 - 2.16,99.20.\cos 52^\circ$	✓CA substitution
	= 270,256	
	$AB = 16,44 \mathrm{m}$	✓CA answer
	710 - 10, 11m	(5)
7.2	In $\triangle GHJ$: $\frac{GJ}{\sin a} = \frac{k}{\sin b}$	✓ A applying sine rule in
1.2	$\sin a = \frac{1}{\sin b}$	triangle GHJ
	$\therefore GJ = \frac{k \cdot \sin a}{\sin b}$	✓A GJ subject of the formula
	$\hat{J}_2 = a + b$ [exterior \angle of Δ]	\checkmark A $\hat{J}_2 = a + b$
	Area of $\Delta GJL = \frac{1}{2}GJ.JL.\sin \hat{J}_2$	✓ A applying area rule in
	Area of $\Delta GJL = -GJ.JL.Sin J_2$	triangle GJL
	$1(k\sin a)$	thangle 30L
	$=\frac{1}{2}\left(\frac{k\sin a}{\sin b}\right).k.\sin(a+b)$	✓ A substitution into area rule
	$=\frac{k^2\sin a.\sin(a+b)}{}$	
	$=\frac{2\sin b}{2\sin b}$	(5)
		[10]
		[-~]

8.1.1	$\hat{O}_1 = 360^\circ - 2x$ [\angle s around a point]	✓S/R
	$Q\hat{R}S = \frac{1}{2}\hat{O}_1$ [\angle at the centre = 2 \times \angle at the circumference]	√R
	$=180^{\circ} - x$	✓A answer (3)
8.1.2	$\hat{Q}_1 = \hat{S}_2$ [\angle s opp. equal sides]	✓S/R
	$\hat{Q}_1 = \frac{180^\circ - Q\hat{R}S}{2} [\text{sum of } \angle s \text{ of a } \Delta]$	√R
	$=\frac{180^{\circ} - (180^{\circ} - x)}{2}$	
	$=\frac{1}{2}x$	✓CA answer (3)
8.1.3	$\hat{P} = \hat{Q}_1 = \frac{1}{2}x$ [subtended by equal chords]	✓ S (CA) ✓R
	OR	OR (2)
	$\hat{P} = \hat{S}_2 = \frac{1}{2}x$ [\(\angle s\) in the same segment]	\checkmark S (CA) \checkmark R (2)
8.2	In $\triangle ACE$, $\frac{AF}{FC} = \frac{ED}{DC}$ [prop. theorem; DF EA]	✓S/R
	$= \frac{2}{3} = \frac{2k}{3k}$ AF = HF [given]	\checkmark A $\frac{2}{3}$
	$= 2k$ $\therefore CH = 3k - 2k = k$	\checkmark A CH = k
	In $\triangle ABC$, $\frac{AG}{BG} = \frac{AH}{CH}$ [prop. theorem; BC GH]	✓S
	$\frac{AG}{12} = \frac{4k}{1k}$	✓CA substitution
	$\therefore AG = 4 \times 12 = 48 \text{ units}$	✓CA answer (6)
		[14]

This Paper was do Vanloaded from SAEXAN September 2025 Examination GRADE 12 Marking Guideline

9.1	In ΔDSF and ΔOGH	:	
	$1. \hat{\mathbf{S}}_2 = \hat{\mathbf{F}}_1$	[alt. \angle s; DF \parallel SG]	✓ S/R
	$\hat{S}_2 = \hat{H}$	$[\angle s \text{ in the same segment}]$	✓S/R
	$\therefore \hat{\mathbf{f}}_1 = \hat{\mathbf{H}}$		√S
	2. DF = DS	[tangents from the same point]	
	$\therefore \hat{\mathbf{F}}_1 = \hat{\mathbf{S}}_1$	$[\angle s \text{ opp. equal sides}]$	✓S/R
	OG = OH	[radii]	\
	$\hat{H} = \hat{OGH}$	$[\angle s \text{ opp. equal sides}]$	✓S/R
	$\therefore \hat{\mathbf{S}}_1 = \mathbf{O}\hat{\mathbf{G}}\mathbf{H}$		
	3. $\hat{\mathbf{D}} = \hat{\mathbf{O}}_1$	[sum of \angle s of a Δ]	
	∴ ΔDSF ΔOGH	$[\angle \angle \angle]$	✓R (for sum of \angle s of a \triangle OR \angle \angle \angle)
			(6)
9.2	$\hat{ORG} = 90^{\circ}$	[alternate \angle s; DF \parallel SG]	✓S/R
	$RG^2 = OG^2 - OR^2$	[Pythagoras]	
	$=7.5^2-6^2$		✓ A substitution in Pythagoras
	=20,25		
	\therefore RG = 4,5 units		✓ A length of RG
	\therefore SG = 9 units	[line from centre \perp to chord]	✓S (CA)/R
			(4)
	$ORG = 90^{\circ}$ can also be proved using corresponding or co-interior angles.		
			 [10]

QUESTION 10

10.1

Construction: Draw diameter AOD and join DB

$$\hat{A}_1 + \hat{A}_2 = 90^\circ$$

 $A_1 + A_2 = 90^{\circ}$ [tangent \perp radius] $\hat{B}_1 + \hat{B}_2 = 90^{\circ}$ [\angle in a semicircle] [tangent ⊥ radius]

$$\hat{B}_1 + \hat{B}_2 = 90^{\circ}$$

But:
$$\hat{A}_2 = \hat{B}_1$$

[∠s in the same segment]

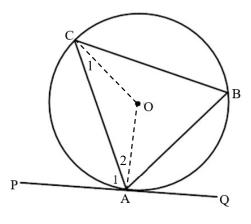
$$\therefore \hat{\mathbf{A}}_1 = \hat{\mathbf{B}}_2$$

 $\hat{CAP} = \hat{ABC}$ or

✓ construction

(5)

(5)


√S √R

✓S/R

✓S/R

OR

OR

Construction: Draw radii CO and AO.

$$\hat{A}_1 + \hat{A}_2 = 90^{\circ}$$
 or $\hat{A}_1 = 90^{\circ} - \hat{A}_2$ [tangent \perp radius]

$$\hat{\mathbf{A}}_2 = \hat{\mathbf{C}}_1$$

 $[\angle s \text{ opp. equal sides}]$

$$\hat{AOC} = 180^{\circ} - 2\hat{A}_2$$

$$\therefore A\hat{B}C = 90^{\circ} - \hat{A}_2$$

 $\hat{AOC} = 180^{\circ} - 2\hat{A}_{2}$ [sum of \angle s of Δ] $\therefore \hat{ABC} = 90^{\circ} - \hat{A}_{2}$ [\angle at centre = 2 × \angle at circumference]

✓S/R

✓ construction

√S √R

✓S/R

$$\therefore \mathbf{A}\mathbf{\hat{B}}\mathbf{C} = \mathbf{\hat{A}}_1$$

or $\hat{CAP} = \hat{ABC}$

SA EXAM PAPERS

Proudly South African

This Paper was downloaded from SAEXAN September 2025 Examination GRADE 12 Marking Guideline

10.2.1					
10.2.1	$\hat{\mathbf{A}} = \hat{\mathbf{D}}_{2}$	[ext. ∠ of cyclic quadrilateral]	√S √R		
		[tan-chord-theorem]	✓S ✓R		
		[vertically opp. ∠s]	✓S/R		
	$\therefore \hat{\mathbf{A}} = \hat{\mathbf{B}}_1$				
	$\therefore AE = AB$	[∠s opp. equal sides]	✓R		
10.2.2	In ΔEBC and ΔEDB:		✓S selecting triangles		
	$\hat{E}_2 = \hat{E}_2$	[common]	✓S		
	$\hat{\mathbf{B}}_2 = \hat{\mathbf{C}}$	[tan-chord-theorem]	✓S/R		
	*	[sum of \angle s of a Δ]	✓R (for sum of \angle s of a \triangle OR		
	∴ ΔEBC ΔEDB	$[\angle \angle \angle]$	$\angle\angle\angle$)		
	$\therefore \frac{EB}{EC} = \frac{ED}{EB}$	$[\ \ \Delta s \]$	✓ S/R		
	$\frac{EA}{EC} = \frac{ED}{EA}$	[EA = EB]	✓ S		
	$\therefore \frac{EA}{E} = \frac{EC}{EC}$				
	ED EA ∴ ED, EA and EC	form a geometric sequence.	(6)		
[17]					

TOTAL: 150

