


You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

AUGUST 2025 (PRE -TRIAL)

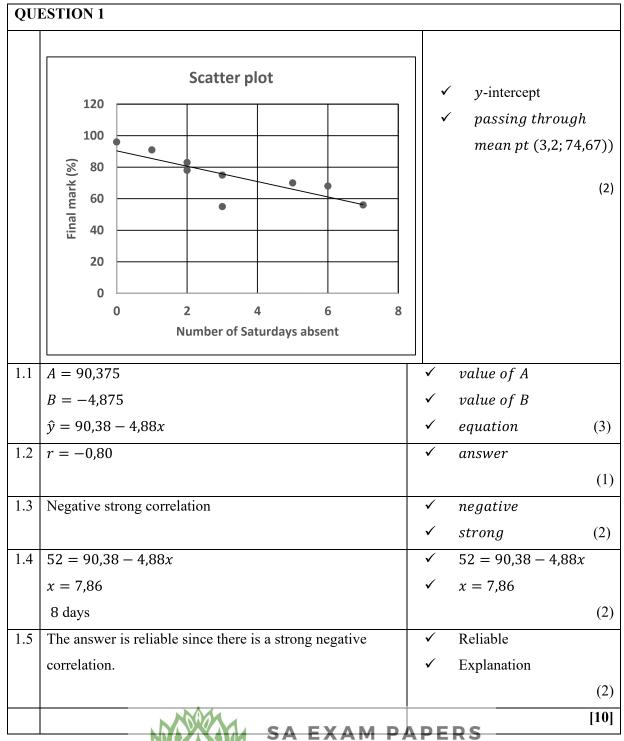
MARKING GUIDELINES

MARKS: 150

Copyright reserved

These marking guidelines consist of 17 pages.

Please turn over

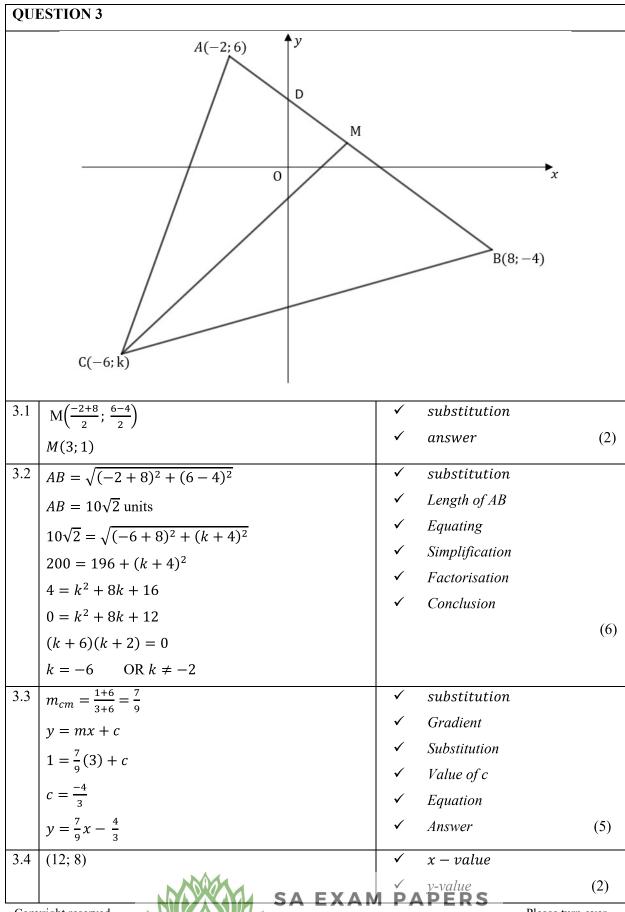

SA EXAM PAPERS This Paper was downloaded from SAEXAMPAPERS

MDE/August 2025

NSC

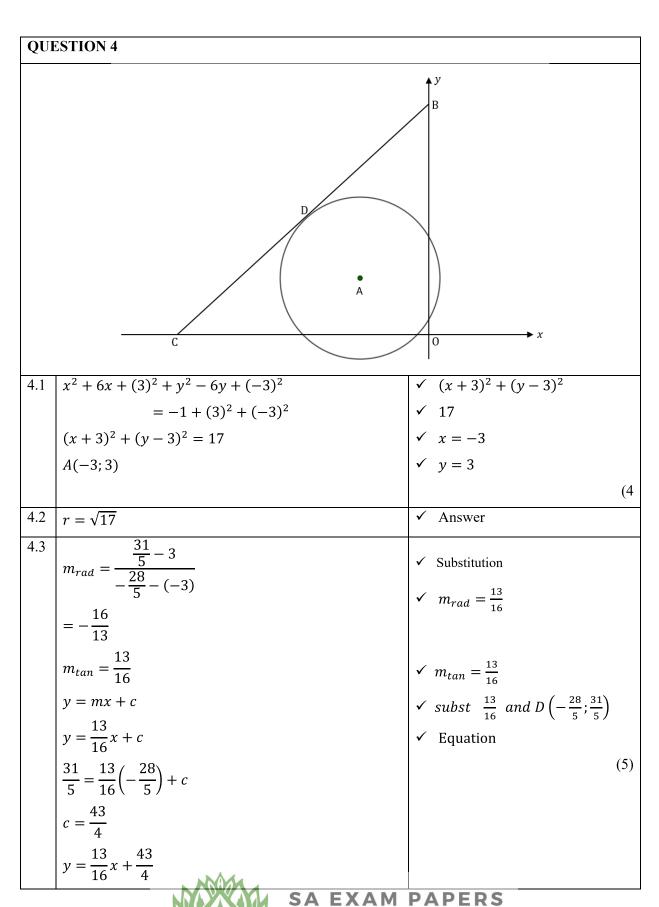
NOTE:

- If a candidate answered a question TWICE, mark only the FIRST attempt.
- If a candidate crossed out an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/ answers to solve a problem is unacceptable.



This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

2.1	Marks	Frequency	Cumulative frequency	√ 20
	$0 < x \le 10$	20	20	✓ Other vales
	$10 < x \le 20$	40	60	1
	$20 < x \le 30$	60	120	(2)
	$30 < x \le 40$	50	170	-
	$40 < x \le 50$	20	190	-
	$50 < x \le 60$	10	200	1
		n = 200]
2.2	200			✓ answer (1
2.3				✓ All points
	Cumula	ative frequen	cy curve of	√ Shape
	l m	athematics r	esults	✓ Grounding
2.4		20 30 40 5 MARKS	■ Se	
2.4	200 – 60			✓ 60
	= 140			✓ 140
				(2)
2.5	$\bar{x} = \frac{(5 \times 20) + (15 \times 4)}{2}$	$\frac{(0) + (25 \times 60) + (35)}{200}$	5×50) + (55×10)	✓ midpoints
	5400	200		√ sum
	$=\frac{300}{200}$			✓ Answer
	= 27			(3)
				[11]


This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

Copyright reserved

	NSC			C
3.5	2y = mx + 1	✓	dividing by 2	
	$y = \frac{1}{2}mx + \frac{1}{2}$	✓	equation	
	$\tan 116,56 = \frac{m}{2}$	✓	gradient	
	2	✓	equation	
	m = -4			(4)
	$y = \frac{1}{2}(-4)x + \frac{1}{2}$			
	$y = -2x + \frac{1}{2}$			
3.6	D(3;9)	√	3	
		✓	9	(2)
3.7	$m_{AB} = \frac{3 - (-3)}{-5 - (-3)} = -3$	√	$m_{AB}=-3$	
	$\tan \beta = -3$	✓	$\tan \beta = -3$	
	$\beta = 108,43^{\circ}$		•	
	$\tan \alpha = \frac{3}{4}$	✓	108,43°	
	4	✓	36,87°	
	$\alpha = 36.87^{\circ}$	✓	answer	
	$\hat{B} = 108,43^{\circ} - 36,87^{\circ}$			(5)
	$= 71,56^{\circ}$	OR		
	OR	✓	substitution	
	$AB = \sqrt{(-5+3)^2 + (-3-3)^2} = 2\sqrt{10}$	✓	$AB = 2\sqrt{10}$	
	AC = 10 and $BC = 10$	✓	AC = 10	
	$(10)^2 = (10)^2 + \left(2\sqrt{10}\right)^2 - 2(10)(2\sqrt{10})\cos B$	✓	$\cos B = \frac{\sqrt{10}}{10}$	
	$\cos B = \frac{\sqrt{10}}{10}$	✓	answer	
	$\hat{B} = 71,57^{\circ}$			(5)
3.8	area ΔABC = $\frac{1}{2}$ (10) $(2\sqrt{10})$ sin 71,57°	✓	$2\sqrt{10}$	
		✓	substitution	
	$= 30 \ units^2$	✓	answer	(3)
	OR	OR		
	$h_{\perp} = 6$	✓	$h_{\perp}=6$	
	AC = 10	✓	substitution	
	area $\triangle ABC = \frac{1}{2}(10)(6)$	✓	answer	
	$= 30 \text{ units}^2$		(3)	
	SA EXAL	M D	ADEDS	[24]

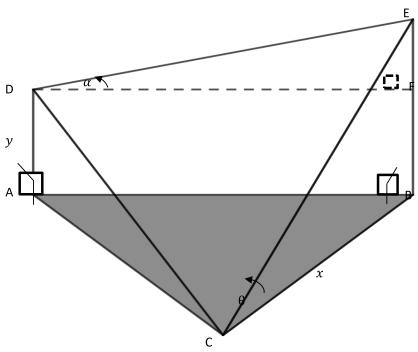
This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

rmula (4)
(4)
(4)
(2)
(2)
(5)

QUES	QUESTION 5		
5.1	$\sin(A-B) = \cos[90^{\circ} - (A-B)]$	✓	$\cos[90^{\circ} - (A - B)]$
	$= \cos[90^{\circ} - A + B]$	✓	$\cos[(90^{\circ} - A) - (-B)]$
	$= \cos[(90^{\circ} - A) - (-B)]$	✓	expansion
	$= \cos(90^{\circ} - A)\cos(-B) + \sin(90^{\circ} - A)\sin(-B)$		(3)
	$= \sin A \cos B - \cos A \sin B$		

	NSC		
5.2.1	$\sin 2\theta = 2 \sin \theta \cos \theta$ $= 2 \left(-\frac{12}{13}\right) \left(\frac{5}{13}\right)$ $= -\frac{120}{169}$	* * * * *	
5.2.2	$\cos(\theta + 30^\circ) = \cos\theta\cos 30^\circ - \sin\theta\sin 30^\circ$	✓	expansion
3.2.2			subst $-\frac{12}{13}$ and $\frac{5}{13}$
	$= \left(\frac{5}{13}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(-\frac{12}{13}\right) \left(\frac{1}{2}\right)$		
	· · ·	✓	subst $\frac{\sqrt{3}}{2}$ and $\frac{1}{2}$
	$=\frac{5\sqrt{3}+12}{26}$	✓	answer (4)
5.3(a)	sin 35° cos 35°	✓	tan 45°
	tan 225° cos 200°	✓	– sin 70°
	$= \frac{\sin 35^{\circ} \cos 35^{\circ}}{\tan 45^{\circ}(-\sin 70^{\circ})}$	✓	-1
	sin 35° cos 35°	✓	$2 \sin 35^{\circ} \cos 35^{\circ}$
	$=\frac{\sin 33 \cos 33}{(-1)\sin 70^\circ)}$	✓	$-\frac{1}{2}$
	sin 35° cos 35°		2
	$={(-1)2\sin 35^{\circ}\cos 35^{\circ}}$		(5)
	$=-\frac{1}{2}$	OR	(5)
	$=-\frac{1}{2}$	√	tan 45°
	OR	√	- cos 20°
	$\frac{\sin 35^{\circ} \cos 35^{\circ}}{\tan 45^{\circ}(-\cos 20^{\circ})} \times \frac{2}{2}$	√	sin 70° in numerator
	sin 70°	√	sin 70° in denominator
	$=\frac{31176}{2(-1)\cos 20^{\circ}}$		(4)
	sin 70°		(+)
	$={-2\sin 70^{\circ}}$		
	$=-\frac{1}{2}$		
5.3(b)	$1 - \sin^2 22.5^\circ$		
	SA EXAM PA	APE	RS

NSC	
$= \frac{2 - 2\sin^2 22,5^{\circ}}{2}$	$\sqrt{\frac{2-2\sin^2 22,5^{\circ}}{2}}$
	2
$=\frac{1+(1-2\sin^2 22,5^\circ)}{2}$	$\checkmark \frac{1 + (1 - 2\sin^2 22,5^\circ)}{2}$
$=\frac{1+\cos 45^{\circ}}{2}$	$\checkmark \frac{1 + \cos 45^{\circ}}{2}$
_	_
$=\frac{1+\frac{\sqrt{2}}{2}}{2}$	$\checkmark \frac{1+\frac{\sqrt{2}}{2}}{2}$
$=\frac{2+\sqrt{2}}{4}$	
5.4.1 $(3 \sin P + 4 \cos Q)^2 = (6)^2$	✓ squaring both sides
$9\sin^2 P + 24\sin P\cos Q + 16\cos^2 Q = 36$	
	✓ squaring both sides
$(4\sin Q + 4\cos P)^2 = (1)^2$	
$16\sin^2 Q + 24\sin Q\cos P + 9\cos^2 P = 1$	✓ adding the equations
adding	√ simplification
$9(\sin^2 P + \cos^2 Q) + 16(\sin^2 Q + \cos^2 Q) +$	
$24\sin P\cos Q + 24\sin Q\cos P = 37$	\checkmark 24(sin $P \cos Q +$
$9 + 16 + 24(\sin P \cos Q + \sin Q \cos P) = 37$	$\sin Q \cos P) = 12$
$24(\sin P\cos Q + \sin Q\cos P) = 12$	(
$\sin P \cos Q + \sin Q \cos P = \frac{1}{2}$	$\checkmark \sin P \cos Q +$
	$\sin Q \cos P = \frac{1}{2}$
$\therefore \sin(P+Q) = \frac{1}{2}$	(6)
$\boxed{5.4.2 \hat{P} + \hat{Q} + \hat{R} = 180^{\circ}}$	$\checkmark \sin(P+R) =$
$\hat{P} + \hat{Q} = 180^{\circ} - \hat{R}$	$\sin(180^{\circ} - R)$
$\sin(P+R) = \sin(180^{\circ} - R)$	$\checkmark \sin(P+R) = \sin R$
$\sin(P+R) = \sin R$	$\checkmark \sin R = \frac{1}{2}$
$\sin R = \frac{1}{2}$	✓
$\hat{R} = 30^{\circ}$	(4)
	[30]



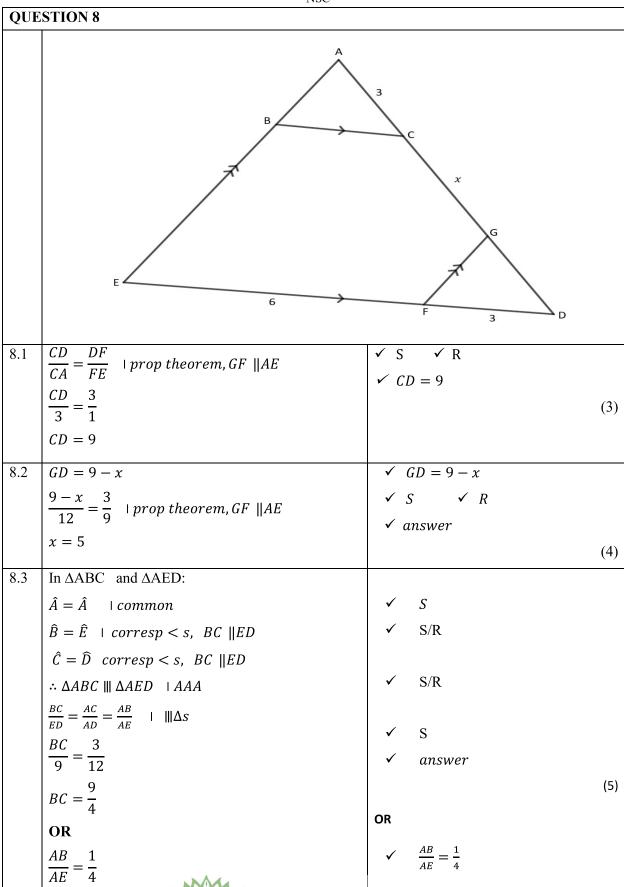
This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

QUES	QUESTION 6			
6.1.1	y = -1	√	answer	(1)
6.1.2	amplitude = 1	√	answer	(1)
6.1.3	b = 2	√	answer	(1)
6.1.4	(-45°; 0) and (45°; 0)	√	(-45°; 0)	
		✓	(45°; 0)	(2)
6.2	$-90^{\circ} \le x < 0 \ or \ 0^{\circ} < x \le 90^{\circ}$	√ √ ·	$-90^{\circ} \le x < 0$	
		✓	$0^{\circ} < x \le 90^{\circ}$	(3)
				[8]

This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

QUESTION 7

7.1	In ΔBCE:	✓	$\tan \theta = \frac{EB}{r}$
	$\tan \theta = \frac{EB}{\alpha}$	✓	$EB = x \tan \theta$
	$EB = x \tan \theta$	✓	$DE = \frac{EF}{\sin \alpha}$
	In ΔDEF:		BF = y
	$\sin \alpha = \frac{EF}{DE}$	✓	EF = EB - y
	$DE = \frac{EF}{\sin \alpha}$		(5)
	$BF = AD = y \mid sides \ of \ rectangles$		
	EF = EB - y		
	$= x \tan \theta - y$		
	$DE = \frac{x \tan \theta - y}{\sin \alpha} \text{ Q. E. D}$		
7.2	$DF^2 = DE^2 - EF^2 \mid Pythagoras$	✓	subst given info
	$DF^{2} = \left(\frac{x \tan \theta - y}{\sin \alpha}\right)^{2} - (x \tan \theta - y)^{2}$	✓	subst into Pythagoras
	$DF = \left(\frac{1}{\sin \alpha}\right) - (x \tan \theta - y)^{-1}$	✓	answer
	$= \left(\frac{1000 \tan 45^{\circ} - 250}{\sin 45^{\circ}}\right)^{2} - (1000 \tan 45^{\circ} - 250)^{2}$		(3)
	$\therefore DF = 750m$		
	OR	OR	



This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

$\tan \alpha = \frac{EF}{DF}$ $DF = \frac{EF}{\tan \alpha}$ $DF = \frac{x \tan \alpha - y}{\tan \alpha}$ $= \frac{1000 \tan 45^\circ - 250}{\tan 45^\circ}$ $\therefore DF = 750m$	√ √ √	$ \tan \alpha = \frac{EF}{DF} $ $ substitution $ $ answer $	(3)
			[8]

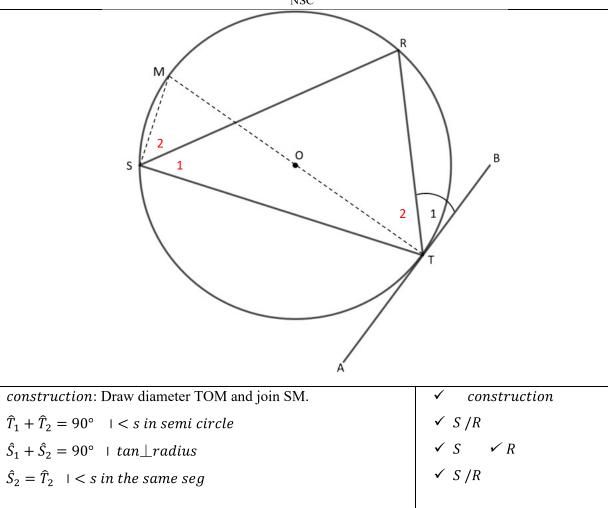
This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

Please turn over

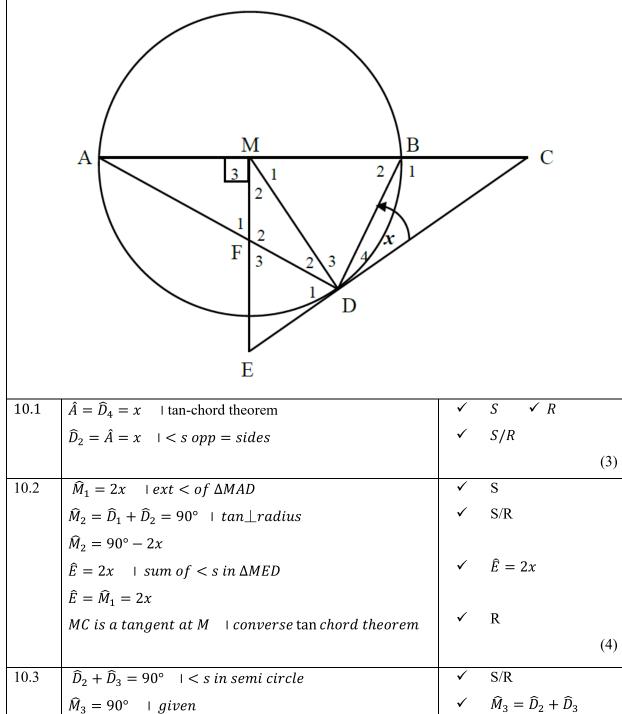
This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

	NSC		
	$\frac{AC}{AD} = \frac{3}{12} = \frac{1}{4}$	✓	$\frac{AC}{AD} = \frac{1}{4}$
	$\therefore \frac{AB}{AE} = \frac{AC}{AD} = \frac{1}{4}$		
	$\therefore \Delta ABC \parallel \Delta AED \mid sides of \Delta s in prop$	✓	S/R
	$\frac{BC}{ED} = \frac{AC}{AD} = \frac{AB}{AE} \Delta S$	✓	ratios
	<i>BC</i> 3	✓	answer
	$\frac{1}{9} = \frac{1}{12}$		
	$BC = \frac{9}{4}$		(5)
8.4	$\hat{C} = \widehat{D}$ corresp < s, BC ED	✓	$\hat{C} = \widehat{D}$
	$\frac{area\Delta ABC}{area\Delta GFD} = \frac{\frac{1}{2}BC.AC\sin C}{\frac{1}{2}FD.GD\sin D}$	✓	$\frac{1}{2}BC.AC\sin C$
	$\frac{1}{area\Delta GFD} - \frac{1}{\frac{1}{2}FD} \cdot \frac{1}{BD} \cdot \frac{1}{BD}$	✓	$\frac{1}{2}FD.GD\sin D$
	$=\frac{BC.AC}{FD.GD}$	✓	$\frac{9}{4} \times 3$ 3×4
	$=\frac{\frac{9}{4}\times 3}{3\times 4}$	✓	answer
	$=\frac{4\times 3}{3\times 4}$		(5)
	$=\frac{9}{16}$		
			[17]
		1	

QUESTION	9	
----------	---	--


Copyright reserved

This Paper was downloaded from SAEXAMPAPERS MDE/August 2025


QUESTION 10

Proudly South African

[19]

This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

	$\widehat{M}_3 = 90^{\circ}$ given
	$\widehat{M}_3 = \widehat{D}_2 + \widehat{D}_3 = 90^{\circ}$
	FMBD is a cyclic quad converse ext < of cyclic quad

$$\hat{F}_1 = 90^{\circ} - x \quad | sum \ of < s \ in \ \Delta AMF$$

$$\hat{B}_2 = \hat{D}_3 = 90^{\circ} - x \quad | < s \ opp = sides$$

$$\hat{F}_1 = \hat{B}_2 = 90^{\circ} - x$$

$$\checkmark \qquad \widehat{M}_3 = \widehat{D}_2 + \widehat{D}_3$$

$$M_3 = D_2 + D_3$$

EXAM PAPERS

This Paper was downloaded from SAEXAMPAPERS MDE/August 2025

	NSC		
	FMBD is a cyclic quad converse ext < of cyclic of	quad	✓ R
			(3
10.4	In ΔMDC:		1
	$MC^2 = MD^2 + DC^2 + Pythagoras$	✓	$MC^2 = MD^2 + DC^2$
	$(3BC)^2 = (2BC)^2 + DC^2$	✓	MC = 3BC and $MD = 2BC$
	$9BC^2 = 4BC^2 + DC^2$	✓	$9BC^2 = 4BC^2 + DC^2$
	$DC^2 = 5BC^2$		(3
10.5	In $\triangle DBC$ and $\triangle DFM$:		
	$\hat{B}_1 = \hat{F}_2$ ext < of cyclic quad	✓ S	✓ R
	$\widehat{D}_4 = \widehat{D}_2 \mid = x$	✓ S	
	$\hat{C} = \widehat{M}_2 + 3^{rd} \text{ of } < s \text{ of } \Delta s$		
	$\triangle DBC \parallel \mid \triangle DFM \mid AAA$	✓ R	
			(4
10.6	$\frac{DM}{BM} = \frac{DC}{BC} \parallel \triangle S$	√	S
	$\overline{FM} = \overline{BC} \qquad \parallel \triangle s$	✓	answer
	_		(2
	$=\frac{\sqrt{5}BC}{BC}$		
	$=\sqrt{5}$		
[12]			
TOTAL: 150			

This Paper was downloaded from SAEXAMPAPERS MDE/August 2024

