

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

GRADE12

NCDOE/March 2025

NORTHERN CAPE DEPARTMENT OF EDUCATION

NOORD KAAP

DEPARTEMENT VAN ONDERWYS

LEFAPHA LA THUTO

PROVINCIAL COMMON TEST

GRADE 12

MATHEMATICS
CONTROL TEST
MARCH 2025

MARKS: 100

TIME: 2 HOURS

This question paper consist of 5 pages and Information sheet.

SA EXAM This Paper was downloaded from SAEXAMPAPERS

GRADE12 NCDOE/March 2025

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 6 questions.
- 2. Answer ALL the questions.
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Clearly show ALL calculations, diagrams, graphs, et cetera that you used in determining the answers.
- 5. Answers only will not necessarily be awarded full marks.
- 6. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 7. If necessary, round answers to TWO decimal places, unless stated otherwise.
- 8. Diagrams are NOT necessarily drawn to scale.
- 9. An information sheet is included at the end of the question paper.
- 10. Write neatly and legibly.

This Paper was downloaded from SAEXAMPAPERS

GRADE12 NCDOE/March 2025

QUESTION 1

1.1 Solve for x:

1.1.1
$$(3x-6)(x+5)=0$$
 (2)

1.1.2
$$7x^2 + 4x - 9 = 0$$
 (correct to TWO decimal places) (3)

1.1.3
$$(3-x)(x+7) < 0$$
 (3)

$$1.1.4 \quad 3\sqrt{x+3} - 5 = x \tag{5}$$

Solve for x and y: 1.2 y = 3x + 2

$$\frac{1}{y} + \frac{3}{x} = -4 \tag{5}$$

If,
$$\frac{2^x}{16} = \frac{3^y}{3}$$
 determine the value of $x + y$ (4)

[22]

QUESTION 2

- 2.1 Given the sequence 81; x; y; 3 calculate the value(s) of x and y if:
 - 2.1.1 The sequence is arithmetic. (4)
 - The sequence is geometric. (4)
- 2.2 The first four terms of a quadratic pattern are 661;591;525;463
 - Determine the nth term of this pattern. (4)
 - 2.2.2 Calculate the value of the lowest term. (3)
- An arithmetic sequence is given such that: 2.3

$$T_1 + T_3 + T_5 + T_7 + \dots + T_{2013} = 3029$$
 and $T_2 + T_4 + T_6 + T_8 + \dots + T_{2014} = 6050$.

Determine the common difference between each term. (3) [18]

SA EXAM PAPERS

This Paper was downloaded from SAEXAMPAPERS

GRADE12

NCDOE/March 2025

QUESTION 3

3.1 Prove that
$$\sum_{k=0}^{\infty} 7.3^{2-k}$$
 converges. (3)

3.2 Hence, determine the value of
$$m$$
 if $\sum_{k=m}^{\infty} (7.3^{2-k}) = \frac{21}{2}$ (5)

[8]

QUESTION 4

Sketched below is the graph of $h(x) = 3^x - 9$ for $x \in [-3; 2)$

- 4.1 Write down the equation of the asymptote of h (1)
- 4.2 Determine the coordinates of A. (2)
- 4.3 Determine the equation of the straight line g, if g is passing through A and B. (3)
- 4.4 Write down the equation of m(x) = h(x) + 9 (1)
- 4.5 Write down the equation of $m^{-1}(x)$ in the form $y = \dots$ (2)
- 4.6 Write down the range of $m^{-1}(x)$ (2)
- 4.7 Point C is the result of point A when reflected over the line x = 2.

 Calculate the area of $\triangle ABC$.

 [15]

NCDOE/March 2025

QUESTION 5

Given that $f(x) = \frac{-2}{x+p} + q$.

- The equations of the axis of symmetry of f are y = -x + 8 and y = x + 2
- 5.1 Determine the value(s) of p and q. (4)
- 5.2 If p = -3 and q = 5, determine the coordinates of the x and y intercepts. (3)
- 5.3 Sketch the graph of, clearly show all the intercepts with the axes as well as the asymptotes. (3)

 [10]

QUESTION 6

6.1 If $\sin 32^{\circ} = p$, determine, without using calculator, the following in terms of p.

$$6.1.1 \sin 212^{\circ}$$
 (2)

$$6.1.2 \quad \tan\left(-32^{\circ}\right) \tag{2}$$

6.1.3
$$\cos(-482^{\circ})$$
 (3)

6.2 Prove that
$$\frac{\cos^2(90^\circ + y)\sin(180^\circ - y) - \sin(360^\circ - y)\cos^2 y}{\cos(360^\circ - y)} = \tan y$$
 (6)

6.3 Given that $\cos x$; $\sin x$; $\sqrt{3} \sin x$ are the first three terms of geometric pattern.

6.3.1 Determine the value of
$$x$$
 if $0^{\circ} < x < 90^{\circ}$. (3)

- 6.3.2 Hence calculate the sum of the first 10 terms. (4)
- 6.4 Determine the general solution to $6\sin^2 x 7\cos x 5 = 0$. (7)

[27]

TOTAL: 100

This Paper was downloaded from SAEXAMPAPERS

GRADE12

NCDOE/March 2025

INFORMATION SHEET

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni) \qquad A = P(1-ni) \qquad A = P(1-i)^n \qquad A = P(1+i)^n$$

$$T_n = a + (n-1)d \qquad S_n = \frac{n}{2}[2a + (n-1)d]$$

$$T_n = ar^{n-1} \qquad S_n = \frac{a(r^n - 1)}{r-1}; r \neq 1 \qquad S_\infty = \frac{a}{1-r}; -1 < r < 1$$

$$F = \frac{x[(1+i)^n - 1]}{i} \qquad P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c \qquad y - y_1 = m(x - x_1) \qquad m = \frac{y_2 - y_1}{x_2 - x_1} \qquad m = \tan \theta$$

$$(x - a)^2 + (y - b)^2 = r^2$$

$$In \ \Delta ABC: \qquad \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc.\cos A$$

$$area \ \Delta ABC = \frac{1}{2}ab.\sin C$$

$$\sin(\alpha + \beta) = \sin \alpha.\cos \beta + \cos \alpha.\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha.\cos \beta - \sin \alpha.\sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha.\cos \beta - \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta - \cos \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \sin \alpha.\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta + \cos \alpha.\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta$$

$$\cos(\alpha - \beta) = \cos \alpha.\cos \beta$$

$$\cos(\alpha - \beta)$$

SA EXAM PAPERS