

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

iphondo leMpuma Kapa: Isebe leMfundo Provinsie van die Oos Kaap: Department van Onderwy: Porafensie Ya Kapa Botjahabela: Lefapha la Thuto

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2025

MECHANICAL TECHNOLOGY: FITTING AND MACHINING MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 21 pages.

SA EXAM PAPERS

Proudly South African

MECHANICAL TECHNOLOGY (FITTING AND MACHINING) MECHANICAL TECHNOLOGY (FITTING AND MACHINING)

SECTION A: COMPULSORY

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1 1	A✓	(1)
1.1	\neg	(1)

1.2 C ✓ (1)

1.3 C √ (1)

1.4 B ✓ (1)

1.5 A ✓ (1)

1.6 D ✓ (1)(6 X 1)

QUESTION 2: SAFETY (GENERIC)

Safety precautions

- See that all guards are in place. ✓
- Make sure that no oil, grease, or obstacles are around the machine. ✓
- Select the right blade for the material to be cut. ✓
- Do not adjust guides while the machine is running. ✓
- All materials must be clamped properly before cutting is started. ✓
- Long pieces of material must be supported at the end. ✓
- Always stop machine when you leave it unattended. ✓ (Any 2 x 1) (2)

2.2 Responsibilities of the employees

- Pay attention to their own and other people's health and safety. ✓
- Co-operate with the employer regarding the OHS Act. ✓
- Carry out a lawful order given to them. ✓
- Report any situation that is unsafe or unhealthy. ✓
- Report all incidents and accidents. ✓
- Not to interfere with any safety equipment or misuse such equipment
- Obey all safety rules. ✓ (Any 2 x 1) (2)

2.3 Bench grinder

- Use safety goggles at all times when grinding metal. ✓
- Do not adjust the tool rest while the wheel is in motion. ✓
- Do not force the workpiece onto or bump it against the emery wheel.
- Keep fingers away from revolving wheel, especially when grinding small pieces. ✓
- Grind only on the front surface and never on the sides of an emery wheel. ✓ (Any 2 x 1) (2)

(6)

3

2.4 Advantages of product layout

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. √
- Greater use of unskilled labor is possible. ✓
- Less total inspection is required. ✓
- Less total floor space is needed per unit of production. ✓

(Any 2 x 1) (2)

2.5 Categories of OHS

- Actions ✓
- Conditions ✓

(2)

[10]

QUESTION 3: MATERIALS (GENERIC)

3.1 **Testing materials**

- Sound test ✓
- Bending test ✓
- Filling test ✓
- Machining test
- Hardness test
- Spark test (Any 3 x 1) (3)

3.2 Carbon groups

- Low carbon steel ✓ 0,15–0,3% ✓
- Medium carbon steel ✓ 0,3–0,75% ✓
- High carbon steel ✓ 0,75–1,7% ✓ (6)

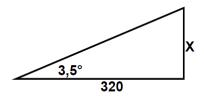
3.3 Purpose of normalizing

 To relieve the internal stresses ✓ produced by machining, forging or welding. ✓

3.4 Tempering process for steel

- Heat the steel to a temperature below the critical temperature. ✓
- Soak it at that temperature for a period. ✓
- Quench / cool in an appropriate quenching agent. (water, brine, or oil) ✓ (3)

[14]


QUESTION 4: MULTIPLE-CHOICE QUESTION (SPECIFIC)

- 4.1 $C \checkmark$
- 4.2 C✓
- 4.3 A✓
- 4.4 A✓
- 4.5 В✓
- 4.6 D✓
- 4.7 A✓
- 4.8 В✓
- 4.9 В✓
- 4.10 A ✓
- 4.11 D ✓
- 4.12 C ✓
- 4.13 D ✓
- 4.14 B ✓

[14]

QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)

5.1 Tailstock set over

$$Tan \frac{\theta}{2} = \frac{X}{320} \checkmark$$

5.2 **Keyway**

5.2.1 Parallel key OR Pratt and Whitney key OR feather key ✓ (1)

5.2.2 Length = $1.5 \times D$

Diameter = $\frac{126}{1,5}$ \checkmark

= 84 mm ✓ (2)

5.2.3 Thickness = $\frac{D}{6}$

 $=\frac{84}{6}$

= 14 mm √ (2)

5.2.4 Width = $\frac{D}{4}$

 $=\frac{84}{4}$

= 21 mm √ (2)

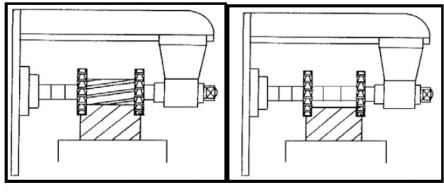
5.3 Milling processes

Up-cut milling advantages

- Heavier cuts can be taken ✓
- Hard steels can be cut.
- Life of a milling cutter is extended.
- A coarse feed can be used.
- Strain on the cutter and arbor will be less.
- Heavier cuts can be taken

(Any 1 x 1) (1)

SA EXAM PAPERS


7

Down-cut milling advantages

- Deeper cuts can be taken ✓
- A finer finish is obtained
- Less vibration is experienced

(Any 1 x 1) (2)

5.4 Difference between gang milling and straddle milling.

Gang milling

Straddle milling

Correct drawing	2 marks each
Labels	1 mark each
•	

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 **Gear terminology**

6.1.1 **Dedendum**

Dedendum =
$$1,25 \times m$$
 OR Dedendum = $1,157 \times m$
Dedendum = $1,25 \times 2,5$ Dedendum = $1,157 \times 2,5$
= $3,125 \text{ mm}$ = $2,89 \text{ mm}$ \checkmark (2)

6.1.2 Pitch circle diameter.

PCD = circular pitch (CP) x number of teeth(T) π = $(m \times \pi) \times T$ π = 7.85×25 π = 62,5 mm

OR

$$PCD = m \times T$$

$$= 2.5 \times 25$$

$$= 62.5mm$$

$$\checkmark$$
(2)

6.1.3 Outside diameter

Outside Diameter =
$$PCD + 2m$$

= $62.5 + 2 \times 2.5$
= $67.5mm$ \checkmark

6.1.4 Circular pitch

Circular Pitch =
$$\pi x m$$

= $\pi x 2.5$
= 7.85 mm

6.2 Spur gear cutting

6.2.1 Simple indexing

Indexing
$$= \frac{40}{A} \checkmark$$

$$= \frac{40}{100} \checkmark$$

$$= \frac{2}{5} \times \frac{5}{5}$$

$$= \frac{10}{25} \checkmark$$

Indexing is 10 holes in 25-hole circle ✓

OR

Indexing is 12 holes in 30-hole circle

(4)

6.2.2 **Change gears**

$$\frac{Driver}{Driven} = \frac{A-N}{A} \times \frac{40}{1} \qquad \checkmark$$

$$= \frac{100-97}{100} \times \frac{40}{1} \quad \checkmark$$

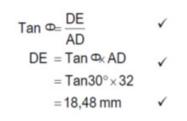
$$= \frac{120}{100} \checkmark$$

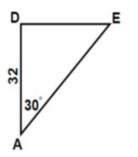
$$= \frac{6}{5} \times \frac{8}{8} \checkmark$$

$$= \frac{48}{40} \quad \checkmark$$

Driver has 48 teeth Driven has 40 teeth

(5)

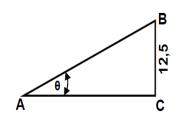

6.3 Dovetail calculations


Calculate distance "x" between rollers:

$$X = 120-2(DE)+2(AC)+2 (r)$$

$$Y = 120 - 2 (DE)$$

Calculating DE


Calculating AC

Tan
$$\Phi = \frac{BC}{AC}$$

$$AC = \frac{BC}{Tan \Phi}$$

$$= \frac{12,5}{Tan 30^{\circ}}$$

$$= 21,65 \text{ mm}$$

Calculating Y

Y =
$$120 - 2$$
 (DE)
= $120 - 2$ (18,48) \checkmark
= $83,04$ mm \checkmark

Calculating X

X =
$$120 - 2(DE) + 2(AC) + 2(r) \checkmark$$

= $120 - 2(18,48) + 2(21,65) + 2(12,5) \checkmark$
= $83,04 + 43,3 + 25$
= $151,34 \text{ mm} \checkmark$ (11)

11

QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)

7.1 Difference between hardness and toughness

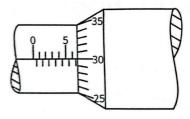
Hardness

Material's ability to resist deformation, abrasion, indentation, penetration or scratching and wear $\checkmark\checkmark$

Toughness

Material's ability to withstand shock loads without bending or cracking ✓✓ (4)

7.2 Hardness testing

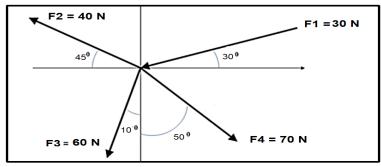

7.2.2 Label parts

A – Applied force ✓

B – Indenter or indenter diameter ✓

C – Indentation diameter ✓ (3)

7.3 Screw thread micrometer reading



Reading = 6 mm + 0.5 mm + 0.3 mm = 6.80 mm

Drawing	2 marks
Correct reading	3 marks
6 mm √ 0,5 mr	m ✓ 0,3 mm ✓

QUESTION 8: FORCES (SPECIFIC)

8.1 System of forces

8.1.1 Sum of horizontal components

8.1.2 Sum of vertical components

$$\sum VC = -30 \sin 30 + 40 \sin 45 - 60 \sin 80 - 70 \sin 40$$

$$= -15 \checkmark + 28,28 \checkmark -59,09 \checkmark -45 \checkmark$$

$$= -90,81 \text{ N} \checkmark$$
(5)

OR

Force	θ	Vertical components		Horizontal components	
30	210	30 sin 210	- 15 ✓	30 cos 210	-25,98 ✓
40	135	40 sin 135	28,28 ✓	40 cos 135	-28,28 ✓
60	260	60 sin 260	-59,09 ✓	60 cos 260	-10,42 ✓
70	320	70 sin 320	-45 ✓	70 cos 320	53,62 ✓
TOTAL		Υ	-90,81 N ✓	X	-11,06N ✓

8.1.3 Magnitude of the resultant

$$R^{2} = X^{2} + Y^{2}$$

$$= (11,06)^{2} + (90,81)^{2} \checkmark$$

$$= \sqrt{8368,7797}$$

$$R = 91,48 \text{ N } \checkmark$$
(2)

8.1.4 Angle and the direction of the resultant

Tan
$$\theta = \frac{Y}{X}$$

$$= \frac{90.81}{11.06} \checkmark$$

$$= \tan^{-1} (8,21066....)$$
 $\theta = 83,10^{\circ} \text{ S of W } \checkmark \text{ OR } 263,10^{\circ}$ (2)

(5)

8.2 Stress and Strain

8.2.1 Diameter of the shaft

60 kN =
$$50 \times 10^{3}$$

30 MPa = 30×10^{6}
 $\sigma = \frac{F}{A}$
 $A = \frac{F}{\sigma} \checkmark$
 $= \frac{60 \times 10^{3}}{30 \times 10^{6}} \checkmark$
 $= 2 \times 10^{-3} \text{ m}^{2} \checkmark$
 $A = \pi r^{2}$
 $r^{2} = \frac{A}{\pi}$
 $r = \sqrt{\frac{2 \times 10^{-3}}{\pi}} \checkmark$
 $= 25 \times 10^{-3}$
 $r = 50,46 \times 10^{-3} \text{ m}$
 $= 50,46 \text{ mm} \checkmark$

8.2.2 Strain

$$K = \frac{\sigma}{\varepsilon} \checkmark$$

$$\varepsilon = \frac{\sigma}{K}$$

$$= \frac{30 \times 10^{6} \checkmark}{90 \times 10^{9}}$$

$$= 3,33 \times 10^{-4} \checkmark$$
(3)

8.2.2 Change in length

$$\varepsilon = \frac{\Delta l}{L} \checkmark$$

$$\Delta L = \varepsilon \times L \checkmark$$

$$= 3,33 \times 10^{-4} \times 2$$

$$= 6,67 \times 10^{-4} \text{ m} \checkmark$$

$$= 0,67 \text{ mm}$$
(3)

8.3 **Moments**

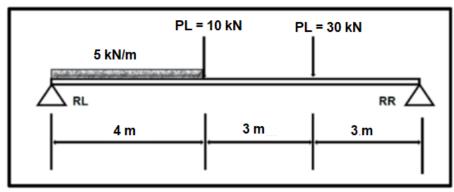


FIGURE 8.3

8.3.1 Uniform Distributed Load

$$5 \text{ kN/m x 4 m }\checkmark$$

$$= 20 \text{ kN }\checkmark$$
(2)

8.3.2 Taking moments about RL

$$\sum CWM = \sum ACWM$$

$$(20 \times 2) + (10 \times 4) + (30 \times 7) = (RR \times 10) \checkmark$$

$$\frac{40 + 40 + 210}{10} = \frac{10 RR}{10} \checkmark$$

$$RR = 29 \text{ kN} \checkmark$$
(3)

8.3.3 Taking moments about RR

$$\sum CWM = \sum ACWM$$

$$(30 \times 3) + (10 \times 6) + (20 \times 8) = (RL \times 10) \checkmark$$

$$\frac{90 + 60 + 160}{10} = \frac{10 RL}{10} \checkmark$$

$$RL = 31 \text{ kN} \checkmark$$
(3)
[33]

(2)

QUESTION 9: MAINTENANCE

9.1 Preventative maintenance sub-groups

- Planned or scheduled maintenance ✓
- Condition based maintenance √

9.2 Chain drive maintenance

- Cleaning uncovered chain drives √
- Check sprocket teeth and link plate wear ✓
- Lubricating chain drives (manually or automatically) √
- Checking the functioning of tensioning devices (idler sprocket)
- Inspect chains regularly for elongation and record results (Any 3 x 1) (3)

9.3 Cutting fluid maintenance

- Check that there is sufficient flow of cutting fluid to the cutting tool ✓
- Ensure that the sump is topped up from time to time ✓
- Remove metal cutting from the machine's splash tray. ✓
- Avoid contamination of the cutting fluid by draining and regularly replacing it. (Any 3 x 1) (3)

9.4 Viscosity

Viscosity is the resistance of a fluid to flow. ✓✓ (2)

9.5 Advantageous characteristics for using nylon

- Toughness ✓
- Hard-wearing ✓
- Needs little or no maintenance
- Needs no lubrication
- It is cheap
- It is light
- Can absorb shock
- · Resistant to chemicals
- Endures high temperatures (Any 2 x 1) (2)

9.6 Uses of Materials

9.6.1 **Teflon**

- Orthopaedic and prosthetic appliances √
- Hearing aids
- Joints
- Upholstery
- Corrosion resistant mechanical parts (taps and bearings)
- Electrical insulation
- Non-stick coatings for cooking utensils (Any 1 x 1) (1)

9.6.2 Glass fibre

Motor vehicle bodies ✓

Boats

Transparent roofing sheets

Petrol tanks

Swimming pools

Furniture

Fruit and salad bowls

Ornaments

Fishing rods (1)

9.7 True or False

9.7.1	True ✓	(1)	
-------	--------	-----	--

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Pitch of screw thread

 The pitch is the axial distance measured from any given point on the screw thread √to a corresponding point on an adjacent thread. √

10.2 Square thread terminology

A – Crest/outside diameter ✓

B – Effective/mean diameter or pitch diameter ✓

C - Pitch ✓

D – Helix angle ✓

 $E - Cutting tool \checkmark$ (5)

10.3 Square Thread Calculations:

10.3.2 Mean diameter = OD -
$$\frac{1}{2}$$
 pitch

$$=78-\frac{1}{2}(6)$$

$$= 75 \text{ mm} \qquad \checkmark \tag{2}$$

10.3.3 Helix angle:
$$\tan \theta = \frac{lead}{pitch \ circumference}$$

$$\tan \theta = \frac{18}{\pi \times 75} \checkmark \checkmark$$

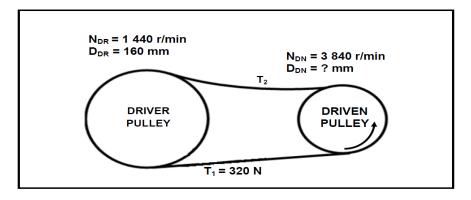
$$\theta = \tan^{-1}(0.0763...)$$

$$\theta = 4,37^{\circ} \checkmark \tag{3}$$

10.3.4 Leading tool angle =
$$90^{\circ}$$
 – (helix + clearance angle)

$$= 90^{\circ} - (4,37^{\circ} + 3^{\circ}) \checkmark$$

= 82,63° \(\tag{2}


(2) **[18]**

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Function of a belt

Transfer motion from pulley A √ to pulley B. √

11.2 Belt drives:

11.2.1 Diameter of the driven pulley

$$N_{DN} \times D_{DN} = N_{DR} \times D_{DR}$$

$$D_{DN} = \frac{N_{DR} \times D_{DR}}{N_{DN}}$$

$$D_{DN} = \frac{1440 \times 0,16}{3840}$$

$$D_{DN} = 0,06 \text{ m}$$

$$= 60 \text{ mm}$$
(3)

11.2.2 Power transmitted

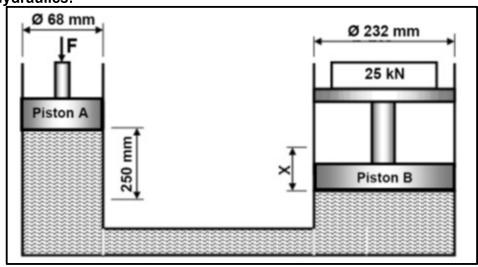
$$\frac{T_1}{T_2} = 2.5 \qquad \checkmark$$

$$T_2 = \frac{320}{2.5}$$

$$T_2 = 128 N$$

$$P = \frac{(T_1 - T_2) = 0}{60}$$

$$P = \frac{(320 - 128) = 0.16 \times 1440}{60}$$


$$P = 2316.23 Watt$$
(5)

NOTE: If driven diameter and speed is used to calculate power, mark correct, i.e. 2 316,23 Watt.

11.3 Speed ratio

Speed ratio =
$$\frac{Driven}{Driver}$$
 \(= $\frac{60}{15}$ \(\text{ } \)
$$= 4:1 \(\ \) \((3) \)$$

11.4 Hydraulics:

11.4.1 Fluid pressure

$$A_{B} = \frac{\pi D^{2}}{4}$$

$$A_{B} = \frac{\pi (0,232)^{2}}{4} \qquad \checkmark$$

$$A_{B} = 42,27327 \times 10^{-3} \text{ m}^{2} \qquad \checkmark$$

$$P = \frac{F_{B}}{A_{B}} \qquad \checkmark$$

$$P = \frac{25 \times 10^{3}}{42,27 \times 10^{-3}} \qquad \checkmark$$

$$= 591390,25 \text{ Pa}$$

$$= 0,59 \text{ MPa} \qquad \checkmark$$
(5)

11.4.2 Force F on piston A

$$A_{A} = \frac{\pi D^{2}}{4}$$

$$A_{A} = \frac{\pi \times (0.068)^{2}}{4}$$

$$A_{A} = 3.631683 \times 10^{-3} \text{m}^{2}$$

$$P_{A} = P_{B}$$

$$V$$

$$P_{A} = \frac{F_{A}}{A_{A}}$$

$$F_{A} = P_{A} \times A_{A}$$

$$F_{A} = (0.59 \times 10^{6})(3.63 \times 10^{-3})$$

$$F_{A} = 2 147.74 \text{ N}$$

$$F_{A} = 2.15 \text{ kN}$$

OR

$$\frac{F_{1}}{A_{1}} = \frac{F_{2}}{A_{2}}$$

$$= \frac{147.7 \text{ N}}{42.27 \times 10^{-3}}$$

$$= 2 147.7 \text{ N}$$

11.4.3 Distance X

= 2,15 kN

$$V_{B} = V_{A}$$

$$A_{B} \times X = A_{A} \times L_{A}$$

$$X = \frac{A_{A} \times L_{A}}{A_{B}}$$

$$X = \frac{(3,63 \times 10^{-3})(0,25)}{42,27 \times 10^{-3}}$$

$$X = 21,48 \text{ mm/stroke}$$

$$\text{for } 10 \text{ strokes} = 21,48 \times 10$$

$$= 214,8 \text{ mm}$$

$$\text{Movement of piston B} = 214,8 \text{ mm}$$

(5)

OR

$$\mathbf{F}_{\mathbf{B}} \times d_{\mathbf{B}} = \mathbf{F}_{\mathbf{A}} \times \mathbf{d}_{\mathbf{A}}$$

$$\boldsymbol{d}_{_{\boldsymbol{B}}} = \frac{\boldsymbol{F}_{_{\boldsymbol{A}}} \times \boldsymbol{d}_{_{\boldsymbol{A}}}}{\boldsymbol{F}_{_{\boldsymbol{B}}}}$$

$$d_{B} = \frac{2147,7 \times 0,25}{25000}$$

$$d_B = 21,48 \text{ mm/stroke}$$

for
$$10 \text{ strokes} = 21,48 \times 10$$

= 214,8 mm

Movement of piston
$$B = 214.8 \text{ mm}$$

(5) **[28]**

TOTAL: 200

SA EXAM PAPERS

Proudly South African