

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2025

MECHANICAL TECHNOLOGY: WELDING AND METALWORK MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 18 pages.

SA EXAM PAPERS

Proudly South African

SECTION A: COMPULSORY

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

- 1.1 A ✓
- 1.2 C ✓
- 1.3 C ✓
- 1.4 B ✓
- 1.5 A ✓

1.6 D \checkmark (6 x 1)

QUESTION 2: SAFETY (GENERIC)

2.1 Safety precautions

- See that all guards are in place. ✓
- Make sure that there is no oil, grease or obstacles around the machine. ✓
- Select the right blade for the material to be cut. ✓
- Do not adjust guides while the machine is running. ✓
- All materials must be clamped properly before cutting is started. ✓
- Long pieces of material must be supported at the end. ✓
- Always stop machine when you leave it unattended. ✓ (Any 2 x 1) (2)

2.2 Responsibility of employee

- Pay attention to their own and other people's health and safety. ✓
- Co-operate with the employer regarding the OHS Act. ✓
- Carry out a lawful order given to them. ✓
- Report any situation that is unsafe or unhealthy. ✓
- Report all incidents and accidents. ✓
- Not to interfere with any safety equipment or misuse such equipment. ✓
- Obey all safety rules. ✓ (Any 2 x 1) (2)

2.3 Bench grinder

- Use safety goggles at all times when grinding metal. ✓
- Do not adjust the tool rest while the wheel is in motion. ✓
- Do not force the workpiece onto or bump it against the emery wheel. ✓
- Keep fingers away from revolving wheel, especially when grinding small pieces. √
- Grind only on the front surface and never on the sides of an emery wheel. √ (Any 2 x 1) (2)

2.4 Advantages of product layout

- Handling of material is limited to a minimum. ✓
- Time period of manufacturing cycle is less. ✓
- Production control is almost automatic. ✓
- Control over operations is easier. ✓
- Greater use of unskilled labour is possible. ✓
- Less total inspection is required. ✓
- Less total floor space is needed per unit of production. ✓
- Reduction in manufacturing costs. √ (Any 1 x 1)

(EC/SEPTEMBER 2025) MECHANICAL TECHNOLOGY (WELDING AND METALWORK)

2.5 Categories of OHS

Actions ✓

• Conditions ✓ (2) [10]

QUESTION 3

3.1 Types of tests to distinguish metals

- Bending test. ✓
- Filing test ✓
- Machining test ✓
- Sound test √
- Spark test. ✓ (Any 3 x 1) (3)

3.2 **Groups of carbon steel:**

- Low carbon steel ✓ 0,15–0,3 % ✓
- Medium carbon steel ✓ 0,3–0,75 % ✓
- High carbon steel ✓ 0,75–1,7 % √

3.3 Purpose of normalizing ferrous metals:

- To change ✓ the properties ✓ of steel.
- To change ✓ the grain structure ✓ of steel. (Any 1 x 2)

3.4 Tempering process of steel:

Copyright reserved

- It consists of heating the hardened steel to a temperature below its critical temperature (colour chart). ✓
- Soaking it at this temperature for a period of time. ✓
- Quenching/cooling it rapidly in water, brine or oil. √ (3)
 [14]

(EC/SEPTEMBER 2025)	MECHANICAL TECHNOLOGY (WELDING AND METALWORK)	<u>5</u>
QUESTION 4		
4.1 D ✓ 4.2 B ✓		(1)
4.3 D ✓		(1) (1)
4.4 B ✓ 4.5 D ✓		(1) (1)
4.6 D ✓		(1)
4.7 B ✓ 4.8 C ✓		(1) (1)
4.9 A ✓		(1)
4.10 B ✓ 4.11 C ✓		(1) (1)
4.12 A ✓		(1)
4.13 A ✓ 4.14 D ✓		(1) (1)
		[14]

QUESTION 5: TERMINOLOGY(TEMPLATES)(SPECIFIC)

5 1	 File	ion	wel	de:
:). I	-us	w	we	us.

- Spot welding ✓
- Projection √
- Seam welding ✓
- Foil seam welding ✓
- Flash or resistance butt ✓
- Gas welding ✓
- MIG/MAGS Welding ✓
- Arc welding ✓ (Any 4 x 1) (4)

5.2 Types of templates

5.3 **Dimensions of the material:**

5.3.1 Mean diameter = Outside diameter - plate thickness
$$\checkmark$$

= 900 - 60 \checkmark
= 840 mm \checkmark (3)

5.3.2 Mean circumference =
$$\pi$$
 x mean diameter \checkmark

$$= \pi \times 840 \checkmark$$

= 2638,94 mm

≈ 2639 mm √ (3)

5.4 **Template loft:**

The template loft is separated from the workshop because ...

- it is quieter. ✓
- the lighting is better. ✓
- all equipment is at hand. ✓
- it is a permanent base. ✓
- marking on the floor enhance accuracy. √ (Any 3 x 1)

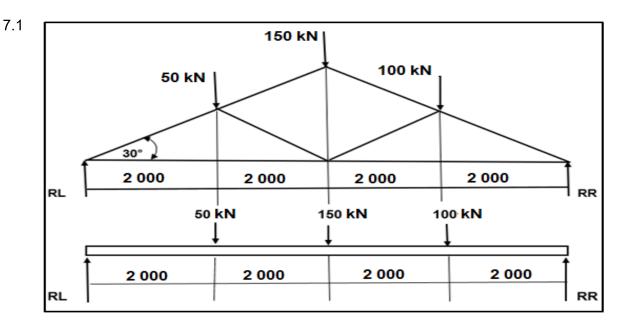
5.5 **Hand tools**

- Hand saws ✓
- Chisels √
- Plane ✓
- Hand drill and drill bits ✓
- Steel measuring tape ✓
- Straight edge ✓
- Compass √
- Trammel pins √
- Carpenter's square ✓
- Protractor √
- Chalk line √
- Steel rule √
- Hammers √
- · Centre punch

Calipers √

SA EXAM PAPERS

MECHANICAL TECHNOLOGY (WELDING AND METALWORK) (EC/SEPTEMBER 2025) Scriber ✓ Combination square ✓ Spirit level ✓ (Any 3 x 1) Trammel ✓ (3) 5.6 Weld dimensions: • 30° – the included angle in degree ✓ • 5 – root gap or root opening in mm ✓ (2) 5.7 Plate girder: • Is a combination of plates and angle iron ✓ welded together. ✓ (2)


[23]

MECHANICAL TECHNOLOGY (WELDING AND METALWORK) (EC/SEPTEMBER 2025) **QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)** 6.1 Function of stock and dies: • They are used for cutting or forming external threads on round bar or shaft. ✓ (1) 6.2 Arc welding equipment: Α Arc welding machine/ Power source ✓ (1) В Earth clamp ✓ (1) С Electrode/Rod/Welding rod ✓ (1) \Box Electrode holder ✓ (1) 6.2.2 Electrode holder is used to hold the electrode. ✓ (1) 6.3 Working principles of the spot-welding machine Current flows through a resistance to fuse plates together. ✓ Two copper electrodes are pressed against the plates. ✓ Heavy current is passed between the electrodes. ✓ High resistance causes intense heat at the point. ✓ • The two plates melt and fuse together, forming a weld nugget or spot weld. ✓ (5) 6.4 **Functions of flashback arrestors** To prevent back feeding / flashback of flame √ • To prevent either oxygen or acetylene gas from flowing towards the cylinders. ✓ (2) 6.5 Advantages of MIGS/MAGS welding: Less distortion. ✓ MIG/MAGS welding quality is better. ✓ Fewer stops and starts. ✓ MIG/MAGS works with many metals or alloys. ✓ Greater deposition rates. ✓ Less post welding cleaning (no slag to chip off weld). ✓ Better weld pool visibility. ✓ No stub end losses or wasted man hours caused by changing electrodes. ✓ Low skill factor required to operate MIG/MAGS welding torch. ✓ Can weld in any position. ✓ The process is easily automated. ✓ (Any 3 x 1)(3) 6.6 Materials that can be cut with a plasma cutter: Mild steel ✓

- Alloy steels ✓
- Stainless steels √
- Non-ferrous metals ✓ (Any 2 x 1) (2) [18]

QUESTION 7: FORCES (SPECIFIC)

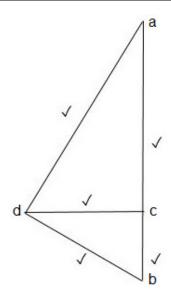
Take moments about reaction left (RL) ✓

RR x 8 000 mm = (50 kN x 2 000 mm) + (150 kN x 4 000 mm) + (100 kN x 6 000 mm)
$$\checkmark$$
RR = $\frac{100\ 000 + 600\ 000 + 600\ 000}{8\ 000}$ \checkmark

$$RR = 162,5 \text{ kN } \checkmark$$
 (4)

Take moments about reaction left (RR) ✓

RL x 8 000 mm =
$$(100 \text{ kN x 2 000 mm}) + (150 \text{ kN x 4 000 mm}) + (50 \text{ kN x 6 000 mm}) \checkmark$$


$$RL = \frac{200\ 000 + 600\ 000 + 300\ 000}{8\ 000} \checkmark$$

$$RL = 137.5 \text{ kN} \checkmark$$
(4)

7.2 Vector/force diagram

7.2.1 **NOTE TO MARKER:**

Marker must redraw the force diagram according to the given scale for marking purposes.

(5)

7.2.2 Magnitude and nature of members

MEMBER	MAGNITUDE	NATURE
AD	86 N (84 N − 88 N) ✓	Strut √
BD	50 N (48 N − 52 N) ✓	Strut √
CD	42 N (40 N − 44 N) ✓	Tie √

7.3 **Beam (UDL)**

7.3.1 Calculate RL and RR

Taking moment about right reaction (RR)

RL x 10 = (30 x 2) + (30 x 4,5) + (20 x 8)
$$\checkmark$$

= 60 + 135 + 160
= $\frac{415}{10}$ \checkmark
RL = 41,5 N \checkmark

Taking moments about RL

RR x 10 =
$$(20 \times 2) + (30 \times 3,5) + (30 \times 8) \checkmark$$

= $40 + 105 + 240$
= $\frac{385}{10} \checkmark$
RR = $38,5 \text{ N} \checkmark$ (6)

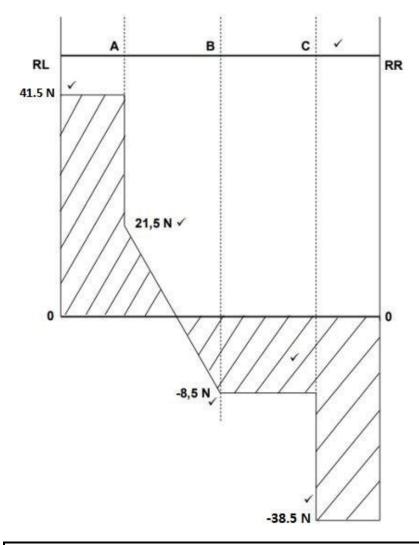
SA EXAM PAPERS

11

7.3.2 Shear forces at point A, B and C

$$\mathbf{SF_A} = 41,5 - 20 \checkmark$$

$$= 21,5 \checkmark$$


$$\mathbf{SF_B} = 41,5 - 20 - 30 \checkmark$$

$$= -8,5 \checkmark$$

$$\mathbf{SF_C} = 41,5 - 20 - 30 - 30 \checkmark$$

$$= -38,5 \checkmark$$
(6)

7.3.3 **Shear force diagram:**

NB: Diagram is not according to scale. Markers must redraw the diagram

(6)

7.4 Stress and Strain:

7.4.1 Stress in the shaft:

Area =
$$\frac{\pi D^2}{4}$$

= $\pi \left(\frac{32^2}{4 \times 10^6}\right) \checkmark$
= $0.8 \times 10^{-3} \, m^2 \checkmark$
 $Stress = \frac{load}{area} \checkmark$
= $\frac{120 \times 10^3}{0.8 \times 10^{-3}} \checkmark$
Stress = $150\,000\,000\,\text{N/m}^2$ or $150 \times 10^6 \, Pa$ or $150\,\text{MPa} \checkmark$ (5)

7.4.2 **Strain of shaft:**

$$\varepsilon = \frac{\Delta L}{OL} \checkmark$$

$$= \frac{0.5}{32} \checkmark$$

$$= 4.17 \times 10^{-3} \checkmark$$
(3)
[45]

QUESTION 8: JOINING METHODS (WELD INSPECTION)

8.1 **Inspection during arc welding:**

- Amount of penetration and fusion. ✓
- Rate of electrode burning and progress of the weld. ✓
- The way the weld metal is flowing (no slag inclusion). ✓
- The sound of the arc, indicating correct current and voltage for the particular weld. ✓ (Any 3 x 1) (3)

8.2 Visual inspection process:

- Shape of profile ✓
- Uniformity of the surface ✓
- Overlap ✓
- Undercutting ✓
- Penetration bead ✓
- Root groove ✓ (Any 2 x 1) (2)

8.3 **Destructive and non-destructive tests:**

8.3.1 Free-bend:

- Used to determine the percentage of elongation of the welded metal. √
- To determine the ductility of the weld metal and heat affected area. √ (Any 1 x 1) (1)

8.3.2 **X-ray test:**

- To determine whether there has been full depth penetration. ✓
- Determine if correct fusion between welded pieces took place. ✓
- To detect internal defects like pin holes, slag inclusions, cracks etc. ✓ (Any 1 x 1) (1)

8.4 Types of flames:

8.4.1 Neutral flame. ✓ (1)

8.4.2 Carburising flame. ✓ (1)

8.4.3 Oxidising flame. ✓ (1)

8.5 Causes of welding defects

8.5.1 Welding spatter:

- Disturbance in the molten weld pool ✓
- Too low welding current/amperage ✓
- Too high welding current/amperage √
- Arc length too long ✓
- Wet/contaminated electrode ✓
- Wrong polarity ✓
- Arc length too short √
- Incorrect type of electrode used ✓
- Incorrect included angle ✓
- Too fast travel speed ✓
- Surface contamination √
- Erratio wire feeding SA EXAM PAPERS (Any 2 x 1) (2)

8.5.2 **Incomplete penetration:**

- Too low welding current/amperage ✓
- Too slow travel speed ✓
- Incorrect torch angle ✓
- Insufficient root gap ✓
- Poor edge/joint preparation ✓
- Excessive root gap ✓
- Too fast travel speed ✓
- Too large electrode diameter √
- Arc length too long ✓
- Wet/contaminated electrodes ✓ (Any 2 x 1) (2)

8.6 Welding defects:

8.6.1 Incomplete penetration ✓ (1)

8.6.2 Undercut ✓ (1)

8.7 Nick break test:

- Make a hacksaw cut at both edges, through the centre of the weld. ✓
- Place specimen on two steel supports. ✓
- Use a sledgehammer to break the specimen in the area of the cuts. ✓
- Inspect the exposed weld metal in the break for incomplete fusion, slag inclusion, etc. √

8.8 Factors determining current setting for welding:

- Base metal type. ✓
- Base metal thickness. ✓
- Electrode diameter. ✓
- Position of the weld. ✓ (Any 3 x 1) (3)
 [23]

15

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

_	4	_		4.5		
9.	1	- 11	isto	vet i	Λn	
IJ.		-	310	/I LI	OI.	٠.

- Do not over weld ✓
- Use intermittent welding ✓
- Place welds near the neutral axis ✓
- Use as few passes as possible √
- Use backstep welding ✓
- Anticipate the shrinkage forces ✓
- Plan the welding sequence ✓
- Use strong backs ✓
- Use clamps, jigs and fixtures ✓
- Pre-heating the workpiece ✓
- Tack welding ✓
- Allow slow cooling after welding. ✓

(Any 2 x 1) (2)

9.2 **Definition of terms:**

9.2.1 **Weld distortion:** Takes place in a welded joints due to uneven expansion and contractions ✓ as a result of intense heat of the arc or oxy-acetylene flame. ✓

(2)

9.2.2 **Residual Stress:** The internal stress distribution locked into the material; ✓ these stresses are present even after all external loads/forces are removed. ✓

(2)

9.3 **Iron-carbon diagram:**

9.3.1 Iron-carbon equilibrium diagram ✓

(1)

9.3.2 A – Temperature/Degrees Celsius ✓

B – Austenite ✓

C – Austenite and Cementite ✓

D – Ferrite and Pearlite ✓

E – Carbon content ✓

(5)

9.4 Elastic deformation:

 It is the ability of a joint/material to return to its original position/ dimensions ✓ after the stresses have been relieved. ✓

(2)

9.5 **Effects of shrinkage:**

9.5.1 **Electrode size:**

- Larger electrode size requires higher current and causes higher welding temperature that causes more deformation/shrinkage. ✓
- Smaller electrode size requires lower current lower welding temperature that causes less deformation/ shrinkage. ✓

(2)

9.5.2 **Welding speed:**

- Decreased welding speed tends to increase localised heat that increases distortion. √
- Increased welding speed tends to decrease localised heat that decreased distortion. ✓

(2) [**18**]

QUESTION 10: MAINTENANCE

10.1 Reasons for maintenance:

- Promote cost saving √
- Improves safety ✓
- Increases equipment efficiency ✓
- Fewer equipment failure ✓
- Improves reliability of equipment √

(Any 2 x 1) (2)

10.2 **Overloading:**

10.2.1 Overloading a guillotine:

• cutting a plate of excessive thickness ✓ or hardness will overload both the blade and hydraulic system. ✓

(2)

10.2.2 Overloading a horizontal band saw:

• the feed speed which is higher than the rate at which the band saw can cut, ✓ effectively results in the blade being forced into the material. ✓

(2)

10.3 Reasons for keeping service records:

- Assist in the monitoring of the condition of the machines. ✓
- Assist in upholding warrantees. ✓
- Assist in keeping a history of maintenance and repairs. ✓ (Any 2 x 1)

[8]

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

Hoppers: 11.1

11.2 Cone frustum:

11.2.1 True length 1 - 2

$$\mathbf{1} - \mathbf{2} = \frac{\pi \times d}{12} \checkmark$$

$$= \frac{\pi \times 300}{12} \checkmark$$

$$= 78,54 \text{ mm} \checkmark \tag{3}$$

11.2.2 True length A - B

$$A - B = \frac{\pi \times d}{12} \checkmark$$

$$= \frac{\pi \times 600}{12} \checkmark$$

$$= 157,08 \text{ mm } \checkmark$$
(3)

11.3 Square to round transition piece:

11.3.1 The true length FG

Plan length
$$FG = FK - GK$$

$$= 400 - 250 \checkmark$$

$$= 150 \checkmark$$

$$\therefore TLFG^2 = FG^2 + VH^2$$

$$= 150^2 + 800^2 \checkmark$$

$$FG = \sqrt{662500} \checkmark$$
True length $FG = 813.94$ units \checkmark (5)

11.3.2 To determine the plan length **CI**, the sides **CE** and **EI** of triangle **CEI** must be calculated.

$$CE = CF - EF$$
$$= 400 - 125$$
$$= 275 \checkmark$$

But **EI = FH**

$$FH = FK - HK$$

= 400 - 217,5
= 182,5 \(\sqrt{}

True length
$$CI^2 = CE^2 + EI^2$$

= $275^2 + 182,5^2 \checkmark$
= $\sqrt{108931,25} \checkmark$
True length $CI = 330,05 \checkmark$ (5)

11.3.3 **JI** is one-twelfth of the circumference

circumference =
$$\pi \times MD$$

= $\pi \times 500$
= 1570,80 \checkmark
= $\frac{1}{12} \times$ circumference = $\frac{1570,80}{12} \checkmark$
= 130,9 \checkmark (3) [21]

TOTAL: 200

