

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES P1 (PHYSICS)

PREPARATORY EXAMINATION

MARKING GUIDELINES

SEPTEMBER 2025

MARKS: 150

1

These marking guidelines consist of 9 pages.

SA EXAM PAPERS

QUESTION 1

1.1	D✓✓	(2	2)

1.2
$$\mathsf{D}\checkmark\checkmark$$
 (2)

1.3 B
$$\checkmark\checkmark$$
 (2)

$$1.4 \qquad \mathsf{D} \checkmark \checkmark \tag{2}$$

$$1.5 \qquad A \checkmark \checkmark \tag{2}$$

$$1.6 \qquad C \checkmark \checkmark \tag{2}$$

$$1.8 \qquad \mathsf{A}\checkmark\checkmark \tag{2}$$

$$1.9 \qquad \mathsf{A}\checkmark\checkmark \tag{2}$$

QUESTION 2

2.1

Ac	Accepted labels		
F	F _a /applied force/50 N√		
f	(kinetic) friction/F₁/fk√		
. Т	F⊤/Tension/F _{tension} ✓		

Notes

- Mark awarded for label and arrow.
- Do not penalise for length of arrows since drawing is not to scale.
- Any other additional force(s): Max ²/₃
- If everything correct, but no arrows: Max ²/₃

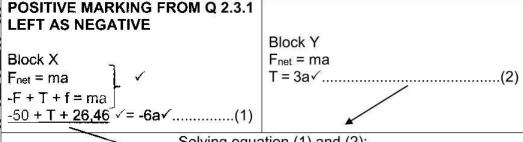
2.2 When a net force is applied on an object, the object will accelerate in the direction of the force and the acceleration is directly proportional to the force ✓ and inversely proportional to the mass of the object. ✓ (2)

Accept Newton's second law in terms of momentum

2.3.1 $f_k = \mu_k N \checkmark$ = 0.3[(6)(9.8) \(\frac{1}{2}\)(9.8)]\(\frac{1}{2}\)

SA EXAM PAPERS

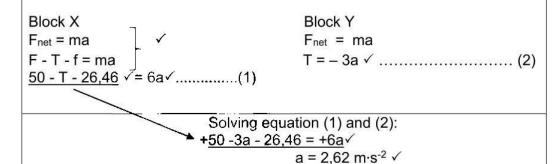
Proudly South African


Please Turn Over

(3)

SA EXAM This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination


= 26,46 N√ (3)2.3.2

Solving equation (1) and (2): -50 +3a + 26,46 = -6a√ $a = 2,62 \text{ m} \cdot \text{s}^{-2} \checkmark$

(6)

POSITIVE MARKING FROM Q 2.3.1 LEFT AS POSITIVE

2.4.1 Each body in the universe attracts every other body with a force that is directly proportional to the product of their masses \(\sqrt{and inversely proportional to the} \) square of the distance between their centres.√

If charges are mentioned $\frac{\sigma}{2}$

2.4.2 OPTION 1
$$\frac{G(2M_E)(m)}{x^2} \checkmark = \frac{\frac{1}{2}G(M_E)(m)}{R^2} \checkmark$$

$$x = 2R\checkmark$$
OPTION 2
$$g_{planet M} = \frac{1}{2}g_{Earth} \checkmark$$

$$\frac{G(2M_E)}{x^2} \checkmark = \frac{\frac{1}{2}G(M_E)}{R^2}$$

$$x = 2R\checkmark$$
OPTION 2
$$g_{planet M} = \frac{1}{2}g_{Earth} \checkmark$$

$$\frac{G(2M_E)}{x^2} \checkmark = \frac{\frac{1}{2}G(M_E)}{R^2}$$

$$x = 2R\checkmark$$
(4)

[20]

(2)

September 2025 Preparatory Examination

QUESTION 3

3.1
$$0.6 \,\mathrm{m}$$
 (1)

3.2.1 DOWNWARD AS POSITIVE
$$v_f^2 = v_i^2 + 2a\Delta y \checkmark = (1.5)^2 + 2(9.8)(2) \checkmark v_f = 6.44 \text{ m·s}^{-1} \checkmark$$
 DOWNWARD AS NEGATIVE $v_f^2 = v_i^2 + 2a\Delta y = (-1.5)^2 + 2(-9.8)(-2) \checkmark v_f = 6.44 \text{ m·s}^{-1} \checkmark$ (3)

3.2.2 OPTION 1
POSITIVE MARKING FROM Q 3.2.1
DOWNWARD AS POSITIVE
$$v_{f} = v_{i} + a\Delta t \checkmark$$

$$6.44 = 1.5 + (9.8)\Delta t \checkmark$$

$$\Delta t = 0.50 \text{ s}\checkmark$$
OPTION 2
POSITIVE MARKING FROM Q 3.2.1
DOWNWARD AS POSITIVE
$$\Delta y = \left(\frac{v_{i} + v_{f}}{2}\right)\Delta t \checkmark$$

$$\left[2 = \left(\frac{1.5 + 6.44}{2}\right)\right]\checkmark \Delta t$$

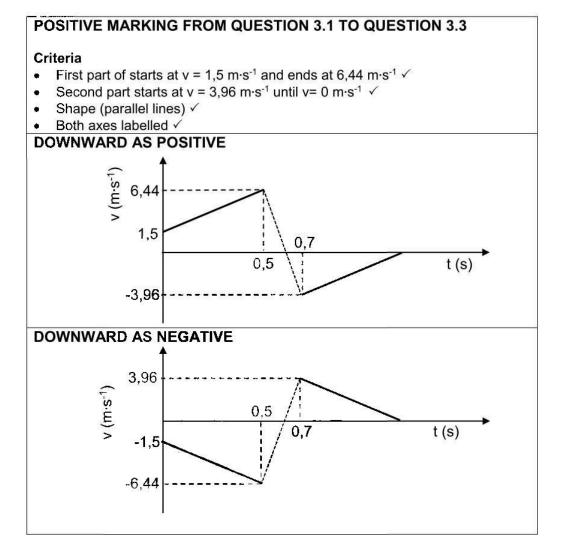
$$\Delta t = 0.50$$
OPTION 3
DOWNWARD AS POSITIVE
$$\Delta y = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}\checkmark$$

$$\left[2 = 1.5 \Delta t + \frac{1}{2}(9.8)]\checkmark \Delta t^{2}$$

$$\left[2 = 1.5 \Delta t + \frac{1}{2}(9.8)]\checkmark \Delta t^{2}$$

$$\left[-2 = -1.5 \Delta t + \frac{1}{2}(-9.8)]\checkmark \Delta t^{2}$$

$$\Delta t = 0.50 \text{ s}\checkmark$$
(3)


3.2.3 OPTION 1 DOWNWARD AS POSITIVE
$$V_f^2 = V_i^2 + 2a\Delta y \checkmark V_i^2 = V_i^2 + 2(9,8)(-0,8) \checkmark V_i = 3,96 \text{ m·s}^{-1}, \text{ upwards} \checkmark$$
 OPTION 1 DOWNWARD AS NEGATIVE $V_f^2 = V_i^2 + 2a\Delta y \checkmark V_i^2 + 2(-9,8)(0,8) \checkmark V_i = 3,96 \text{ m·s}^{-1}, \text{ upwards} \checkmark$ (4)

3.3 POSITIVE MARKING FROM QUESTION 3.2.1 & QUESTION 3.2.3

$$F_{\text{net}} \Delta t = m(v_f - v_i) \checkmark$$
 $F_{\text{net}}(0,2) \checkmark = 0,5(3,96 - (-6,44)) \checkmark$
 $F_{\text{net}} = 26 \text{ N, upwards} \checkmark$
(4)

This Paper was downloaded from SAEXAMPAPERS Preparatory Examination

3.4

(4) **[19]**

September 2025 Preparatory Examination

QUESTION 4

- 4.1 East√ (1)
- 4.2 Newton's Third Law (of Motion) ✓

(Mark independently)

When object A exerts a force on object B, object B simultaneously exerts an oppositely directed force of equal magnitude on object A. \checkmark

4.3

OPTION 1

TO THE LEFT AS POSITIVE

$$\sum_{p_i} = \sum_{p_f} \text{Mit vit} = m_1 v_{f1} + m_2 v_{f2}$$

$$0 \checkmark = \frac{60 v_{f1} + (4)(3)}{v_f = -0,20} \checkmark \text{Any one}$$

$$v_f = 0,20 \text{ m·s}^{-1} \checkmark$$
OPTION 1

TO THE LEFT AS NEGATIVE
$$\sum_{p_i} = \sum_{p_f} \text{Mit vit} = m_1 v_{f1} + m_2 v_{f2} \checkmark \text{Any one}$$

$$0 \checkmark = \frac{60 v_{f1} + (4)(-3)}{v_f = 0,20 \text{ m·s}^{-1}} \checkmark$$

OPTION 2

$$\Delta p_{boy} = -\Delta p_{object}$$

$$m_b(v_{bf} - v_{bi}) = -m_o(v_{of} - v_{oi})$$

$$60(v_{bf} - 0) \checkmark = -4(3-0) \checkmark$$

$$v_{bf} = -0.20$$

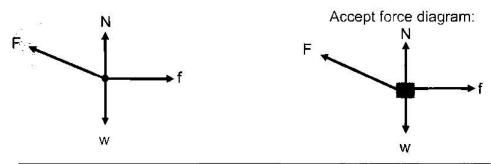
$$\therefore v_{bf} = 0.20 \text{ m·s}^{-1} \checkmark$$

4.4.1 Increases ✓ (1)

4.4.2 Increases ✓ (1)

4.4.3 ∆p_{object} increases√, which causes ∆p_{boy} to increase√ (2)

[12]


(4)

(3)

This Paper was downloaded from SAEXAMPAPERS September 2025 Preparatory Examination

QUESTION 5

5.1

Accepted labels		
W	F _g / F _w / weight/588 N/gravitational force√	
F	F _a /applied force√	
f	(kinetic) friction/F₁/fҡ√	
N	F _N /Normal/F _{normal} ✓	

Notes

- Mark awarded for label and arrow.
- Do not penalise for length of arrows since drawing is not to scale.
- Any other additional force(s): Max $\frac{3}{4}$
- If everything correct, but no arrows: Max/Maks 3/4

(4)

5.2 Work done on an object by a constant force F is F $\Delta x \cos \theta$, where F is the magnitude of the force, Δx the magnitude of the displacement and θ the angle between the force and the displacement. <

OR

The work done on an object is the product of the force and the displacement of the object in the direction of the displacement. <

(2)

$$\begin{array}{l} W_{\text{net}} = \Delta K \\ W_F + W_f = \frac{1}{2} m (v_f^2 - v_i^2) \end{array} \\ \checkmark \text{ Any one} \\ \underline{(80)(2) \cos \Theta + (8)(2) \cos 180^{\circ}} \checkmark = \left[\frac{1}{2}(7)(1,5^2 - 0^2)\right] \checkmark \\ \Theta = 81,42 \, ^{\circ} \checkmark$$

OPTION 2

W_{nc} =
$$\Delta K + \Delta U$$

W_F + W_f = $\frac{1}{2}$ m(v_f² - v_i²) + mg(h_f - h_i) \checkmark Any one $\frac{(80)(2)\cos\Theta + (8)(2)\cos180^{\circ}}{\Theta = 81,42^{\circ}}$ \checkmark = $\frac{[\frac{1}{2}(7)(1,5^{2}-0^{2})+0]}{\Theta = 81,42^{\circ}}$

(4)

5.4 Increases√√

(2)[12]

QUESTION 6

- 6.1 Frequency√ (1)
- 6.2 The sound source (bat) and the listener (bird watcher) have different velocities (2) relative to the medium of sound propagation. ✓ ✓

6.3
$$0.4 \text{ m}\checkmark$$
 (1)

6.4.1
$$v = f \times \lambda \checkmark$$

$$\frac{340 = f \times 0.4}{f = 850 \text{ Hz}}\checkmark$$
(3)

6.4.2 POSITIVE MARKING FROM QUESTION 6.4.1

$$f_{L} = \frac{v \pm v_{L}}{v \pm v_{s}} f_{s}$$

$$f_{L} = \frac{v}{v - v_{s}} \cdot f_{s}$$

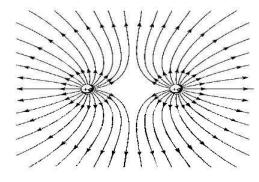
$$850 \checkmark = \frac{340}{340 + v_{s}} \checkmark (875) \checkmark$$

$$v_{s} = 10 \text{ m·s}^{-1} \text{ (away from the batwatcher)} \checkmark$$

$$(5)$$
[12]

QUESTION 7

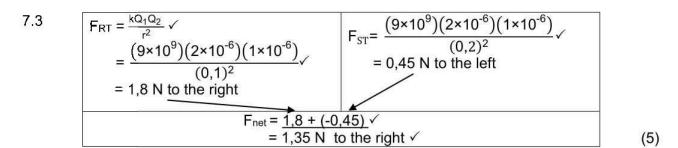
7.1
$$Q = \frac{Q_1 + Q_2}{2}$$


$$= \frac{(9 \times 10^{-6}) + (-5 \times 10^{-6})}{2} \checkmark$$

$$= 2 \times 10^{-6} \text{ C} \checkmark$$
Accept
$$Q = \frac{(9 \mu \text{C}) + (-5 \mu \text{C})}{2} \checkmark$$

$$= 2 \mu \text{C} \checkmark$$
(2)

7.2


Criteria for sketch	Marks ✓
Correct direction of field lines	
Shape of electric field	✓
Field lines not crossing each other /	✓
Field lines start from sphere /	
No field lines inside the spheres	

(3)

This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination

7.4 Electrostatic force experienced per unit positive charge placed (at that point).

7.5 POSITIVE MARKING FROM QUESTION 7.3 OPTION 1

$$E = \frac{F}{q} \checkmark$$

$$= \frac{1,35}{1 \times 10^{-6}} \checkmark$$

$$= 1,35 \times 10^{6} \text{ N} \cdot \text{C}^{-1} \text{ to the right} \checkmark$$
(3)

OPTION 2

$$E = \frac{kQ}{r^2}$$

$$E_1 = \frac{(9.0 \times 10^9)(2 \times 10^{-6})}{(0.1)^2}$$
= 1.80 x 10⁶ N·C⁻¹ to the right \checkmark

$$E_2 = \frac{(9.0 \times 10^9)(2 \times 10^{-6})}{(0.2)^2}$$

= 4.50 x 10⁵ N·C⁻¹ to the left \checkmark

E_{net} =
$$1,80 \times 10^6 \text{ N} - 4,50 \times 10^5$$

= $1,35 \times 10^6 \text{ N} \cdot \text{C}^{-1}$ to the right \checkmark (3)

[15]

September 2025 Preparatory Examination

QUESTION 8

8.1 $12 \,\mathrm{V}\checkmark$ (1)

8.2.1
$$I = \frac{V}{R} \checkmark$$

$$= \frac{6}{8} \checkmark$$

$$= 0.75A \checkmark$$
(3)

8.2.2

OPTION 1	OPTION 2	
$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \checkmark$	$R_p = \frac{R_1 \times R_2}{R_1 + R_2} \checkmark$	
$=\frac{1}{14}+\frac{1}{12}$	$=\frac{14\times12}{14+12}\checkmark$	
R _p = 6,46 Ω ✓	= 6,45 Ω ✓	(3)

8.2.3 **POSITIVE MARKING FROM QUESTION 8.1 & 8.2.2**

$$\epsilon = I(R+r) \checkmark
12 \checkmark = 0.75(6.46 + 18 + r) \checkmark
r = 1.54 Ω \checkmark$$
(4)

8.2.4 **OPTION 1 OPTION 2** POSITIVE MARKING FROM POSITIVE MARKING FROM **QUESTION 8.2.1 & 8.2.2 QUESTION 8.2.1** $V_{II} = IR$ $V_{lost} = Ir$ $= (0.75)(6,46) \checkmark$ =(0,75)(1,54)= 4,845 V = 1,155 V $V_{12\Omega} = \frac{12 - 1,155 - 6}{4,845} \checkmark$ $I_{12\Omega} = \frac{V}{R} \checkmark$ $=\frac{4,845}{12}$ $I_{12\Omega} = \frac{V}{R} \checkmark$ = 0.404 A $I_{12\Omega} = \frac{4,845}{12}$ = 0,404 A 🗸

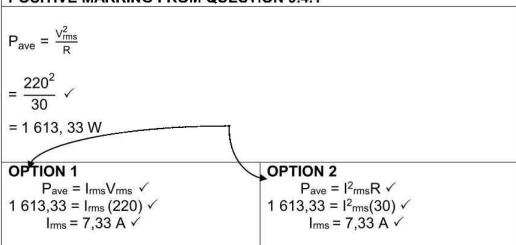
8.3 Cost =
$$P \times \Delta t \times tariff$$

= $3.5 \checkmark \times \frac{50}{60} \checkmark \times 2.65 \checkmark$
= $R7.73 \checkmark$ (4)

(4)

SA EXAM This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination


QUESTION 9

9.4.1
$$V_{rms} = \frac{V_{max}}{\sqrt{2}} \checkmark$$

$$= \frac{311}{\sqrt{2}} \checkmark$$

$$= 220 \text{ V} \checkmark$$
(3)

9.4.2 POSITIVE MARKING FROM QUESTION 9.4.1

OPTION 3

$$R = \frac{V_{ms}}{I_{ms}} \checkmark$$

$$30 = \frac{220}{I_{ms}} \checkmark$$

$$I_{rms} = 7,33 \text{ A} \checkmark$$
[11]

SA EXAM This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination

QUESTION 10

10.2
$$7.2 \times 10^{14} \text{ Hz} \checkmark \checkmark$$
 (2)

10.3 **OPTION 1**

POSITIVE MARKING FROM QUESTION 10.2

E_{k(max)}= hf - hf_o
$$\checkmark$$

X = $(6.63 \times 10^{-34})(1 \times 10^{15}) \checkmark$ - $(6.63 \times 10^{-34})(7.2 \times 10^{14}) \checkmark$
= $1.86 \times 10^{-19} \text{ J} \checkmark$

OPTION 2

Gradient =
$$\frac{\text{Ek}(\text{max})2 - \text{Ek}(\text{max})1}{f_2 - f_1}$$

$$6,63 \times 10^{-34} = \frac{X - 0}{10 \times 10^{14} - 7,2 \times 10^{14}}$$

$$x = 1,86 \times 10^{-19} \text{ J} \checkmark$$
(4)

10.4 Remains the same√

Intensity does not affect kinetic energy of the photons \checkmark OR Only frequency affects $\mathsf{E}_{k(max)}$

OR
The frequency remains the same. (2)
[10]

TOTAL: 150

(4)